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Preface to the Second Edition 

A lot has changed in the fast-moving area of software engineering since the first 
edition of this book came out. However, two particularly dominant trends are 
clearly discernible: focus on software processes and object-orientation. A lot more 
attention is now given to software processes because process improvement is con
sidered one of the basic mechanisms for improving quality and productivity. And 
the object-oriented approach is considered by many one of the best hopes for 
solving some of the problems faced by software developers. 

In this second edition, these two trends are clearly highlighted. Aseparate chapter 
has been included entited "Software Processes." In addition to talking about the 
various development process models, the chapter discusses other processes in soft
ware development and other issues related to processes. Object-orientation figures 
in many chapters. Object-oriented analysis is discussed in the chapter on require
ments, while there is a complete chapter entitled "Object-Oriented Design." Some 
aspects of object-oriented programming are discussed in the chapter on coding, 
while specific techniques for testing object-oriented programs are discussed in the 
chapter on testing. Overall, if one wants to develop software using the paradigm 
of object -orientation, aB aspects of development that require different handling are 
discussed. Most of the other chapters have also been enhanced in various ways. 
In particular, the chapters on requirements specification and testing have been 
considerably enhanced. 

The focus of the book remains an introductory course on software engineering; 
advanced topics are still not included. The basic case study-based approach of the 
book has been preserved. In addition to the structured design of the case study, 
the object-oriented design of the case study has been performed, and the design is 
described in the book. The structured design has now been implemented in C (in the 
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first edition the coding was done in Pascal), keeping in mind the growing popularity 
of the C language in cornmercial establishments. The object-oriented design has 
been coded in C++. Again, C++ was chosen mostly due to its high availability and 
popularity. Both the C and C++ code of the case study are available to readers from 
the horne page for the book. 

Metrics-based software development has been steadily gaining importance. This 
trend has been reftected in the book by placing greater emphasis on the role of 
metrics in software development. The use of some of the metrics in effecting the 
development process has been demonstrated on the case study. For example, metrics 
were used to evaluate, and then change, the design of the case study. Similarly, the 
C code was evaluated and then changed to reduce the complexity. Tools that were 
developed for metrics extraction and evaluation are also being made available 
through the horne page. 

A horne page has been created on the Web for this edition of the book, through 
which some of the documents and code of the case study and some of the tools 
used can be obtained. The URL of the horne page is 

http://www.springer-ny.comlsupplements/jalote/ 

The following material is available through the horne page (these are discussed at 
appropriate places in the book): 

1. Design specifications for the structured design of the case study (both the 
initial and the final versions). 

2. The C code implementing the final structured design of the case study (both 
the initial and the final versions). 

3. The C++ code implementing the object-oriented design of the case study. 

4. The following tools whieh have been used in the case study: 

• dmetric-to evaluate the complexity of a design. 

• complexi ty-to evaluate the complexity of aC program. 

• style-to evaluate the style of aC program. 

• ccov-a test coverage analyzer for C programs. 

I would like to express my gratitude to many people who readily clarified issues 
and provided feedback on various parts of the book. These include Frank McGarry; 
Professors Vietor Basili, Alan Davis, Ginaluigi Caldiera, Harish Karnik, and Mary 
Jean Harrold; and many others. I am partieularly grateful to Kamal K. Mantri, S. 
Haripriya, and G. Aditya Kiran for developing the C and C++ code for the case 
study, developing the tools used for evaluation, and performing experiments with 
the tools and various designs. I would also like to express my thanks to Infosys 
Technologies Ltd., Bangalore, where I am spending my sabbatical, for providing 
the necessary help to finish this edition. Comments about the book are welcome 
and can be sent by email to jalote@iitk.ernet.in. 

Pankaj Jalote 



www.manaraa.com

Preface to the First Edition 

It is now c1ear that development of large software systems is an extremely complex 
activity which is full of various opportunities to introduce errors. Software engi
neering is the discipline that attempts to provide methods to handle this complexity 
and enable us to produce reliable software systems with maximum productivity. 

This book offers an integrated approach to software engineering. The "integrated" 
approach is different from others because the different topics are not covered in 
isolation. A running case study is employed, which is used throughout the book, 
illustrating the different activities of software development on the same project. 
Most ofthe major outputs ofthe project, such as the project plan, design document, 
code, test plan, test report, and so on, are shown for the case study. 

It is important, and very instructive, to not only teach the principles of software 
engineering but also apply them to a software development project so that all 
aspects of development can be seen c1early on a project. Such an approach, besides 
explaining the principles, also offers a case study which can be used as a model 
for a software development project by a student. 

Integration is further achieved by combining software metrics with the different 
development phases, instead of having aseparate chapter on the subject. It is 
recognized that metrics are used for controlling and assessing a software project 
and are employed throughout the life cyc1e. In the book, for each phase, relevant 
metrics and their use is discussed in the chapter for that phase. This conveys the right 
idea that metrics is not really a separate topic, complete in itself, but is integrated 
with the different activities of software development. Similarly, for each phase, 
quality assurance activities and the control activities that need to be performed 
while the activities of that phase are being done are described in the chapter for 
the particular phase. 
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The sequence of chapters is essentially the same as the sequence of activities 
performed during software development. All activities, including quality assur
ance and control activities, that should be performed during a particular phase are 
grouped in one chapter. This is particularly useful for a project-based introductory 
course in software engineering in which both the students and the instructor can 
follow the chapters in the order given both in the lectures as weIl as in the project. 

This book is for students who have not had previous training in software engi
neering, and it is suitable for a one-semester course. In order to limit the scope 
of the book and focus it for an introductory course, advanced topics like software 
reuse, reverse engineering, development environments, and so on, have not been 
included. It was feit that in an introductory course, rather than trying to give a 
ftavor of all the topics, it would be best to introduce the student to the discipline 
of software engineering as weIl as to some of the important topics, and to prepare 
the student for taking advanced courses in the area of software engineering. This 
need was further feIt since in the undergraduate computer science curriculum of 
most universities, the students have no exposure to software engineering prior to 
the introductory course, and often do not have any other foIlow-up course before 
they graduate. One of the goals of the book, then, is to include only as much ma
terial as can be covered in a one-semester course, which may be the only software 
engineering course in a computer science student's education. 

I am grateful to my coIleagues Vietor R. Basili and Dieter Rombach for their 
valuable inputs during the conceptual stages. I am particularly grateful to students 
in the software engineering courses that I taught at the University of Maryland 
and the Indian Institute of Technology, Kanpur. Teaching and interacting with the 
students had a great inftuence on the final form of the book. Students in my course 
at the Indian Institute of Technology, partieularly Sandeep Sharma and Samudrala 
Sridhar, deserve special thanks for helping with the case study. 
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1 __________________________________ __ 

Introduction 

The evolution of electronic computers began in the 194Os. Early efforts in the field 
of computing were focused on designing the hardware, as that was the challenge, 
and hardware was where most technical difficulties existed. In the early computing 
systems, there was essentially no operating system; the pro grams were fed with 
paper tapes or by switches. With the evolution of second-generation machines in 
the 1950s, early concepts of operating systems evolved and single-user operating 
systems came into existence. High-Ievellanguages, particularly FORTRAN and 
Cobol, along with their compilers were developed. There was a gradual trend 
toward isolating the user from the machine intemals, so the user could concentrate 
on solving the problem at hand rather than getting bogged down in the machine 
details. 

With the coming of the multiprogramming operating systems in the early 1960s, 
the usability and efficiency of the computing machines took a big leap. Prices 
of hardware also decreased, and awareness of computers increased substantially 
since their early days. With the availability of cheaper and more powerful ma
chines, higher-Ievellanguages, and more user-friendly operating systems, the ap
plications of computers grew rapidly. In addition, the nature of software engineer
ing evolved from simple programming exercises to developing software systems, 
which were much larger in scope, and required great effort by many people. The 
techniques for writing simple programs could not be scaled up for developing soft
ware systems, and the computing world found itself in the midst of a "software 
crisis." Two conferences, sponsored by the NATO Science Committee, were held 
in Europe in the 1960s to discuss the growing software crisis and the need to fo
cus on software development. The term software engineering was coined at these 
meetings. 
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2 1. Introduction 

The use of computers is growing very rapidly. Now computer systems are used 
in such diverse areas as business applications, scientific work, video games, air 
traffic control, aircraft control, missile control, hospital management, airline reser
vations, and medical diagnostic equipment. There is probably no discipline that 
does not use computer systems now--even artists, linguists, and filmmakers use it. 
With this increased use of computers the need for software is increasing dramat
ically. Furthermore, the complexity of these systems is also increasing-imagine 
the complexity of the software for aircraft control or a telephone network moni
toring system. Actually, the complexity of applications and software systems has 
grown much faster than our ability to deal with it. Consequently, many years after 
the software crisis was first declared, we find that it has not yet ended. Software 
engineering is the discipline whose goal is to deal with this problem. 

In this chapter we first define our problem domain and discuss the major reasons 
for the "software problem." Then we discuss the major problems that software 
engineering faces. This is followed by the basic approach followed by software 
engineering to handle the software crisis. In the rest of the book we discuss in more 
detail the various aspects of the software engineering approach. 

1 .1 The Software Problem 

Let us first discuss what we mean by software. Software is not merely a collection of 
computer programs. There is a distinction between a program and a programming 
systems product. A program is generally complete in itself and is generally used 
only by the author of the program. There is usually little documentation or other 
aids to help other people use the program. Because the author is the user, the 
presence of "bugs" is not a major concern; if the program crashes, the author will 
fix the program and start using it again. These programs are not designed with such 
issues as portability, reliability, and usability in mind. 

A programming system product, on the other hand, is used largely by people other 
than the developers of the system. The users may be from different backgrounds, so 
a proper user interface is provided. There is sufficient documentation to help these 
diverse users use the system. Programs are thoroughly tested before operational 
use, because users do not have the luxury of fixing bugs that may be detected. And 
because the product may be used in a variety of environments, perhaps on a variety 
of hardware platforms, portability is a key issue. 

Clearly, a pro gram to solve a problem and a programming systems product to solve 
the same problem are two entirely different things. Obviously, much more effort 
and resources Me required for a programming systems product. Brooks estimates 
[Bro75] that as a rule of thumb, a programming systems product costs approxi
mately ten times as much as a corresponding program. The software industry is 
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largely interested in developing programming systems products, and most commer
cial software systems or packages fall in this category. The programming systems 
product is also sometimes called production or industria~quality software. 

IEEE defines software as the collection of computer programs, procedures, roles, 
and associated documentation and data [IEE87]. This definition clearly states that 
software is not just programs, but includes all the associated documentation and 
data. This implies that the discipline dealing with the development of software 
should not deal only with developing pro grams, but with developing all the things 
that constitute software. Overall, we can say that software engineering is largely 
concemed with the development of industrial-quality software, where software is 
as defined earlier. In the rest of the book software means industrial-quality software. 

1.1.1 Software Is Expensive 

Over the past decades, with the advancement of technology, the cost of hardware 
has consistently decreased. For example, the cost per bit of memory decreased more 
than 50 fold in two decades [Dav93]. The situation with the processors is similar; 
virtually every year newer and faster processors are introduced that provide many 
times the compute power of earlier mainframe computer systems at a cost that is 
a fraction of those mainframe systems. On the other hand, the cost of software 
is increasing. As a result, the HW/SW ratio for a computer system has shown a 
revers al from the early years, as is shown in Figure 1.1 [Boe76]. 

The main reason for the high cost of software is that software development is still 
labor-intensive. To get an absolute idea of the costs involved, let us consider the 
current state of practice in the industry. Delivered lines of code (DLOC) is by far the 
most commonly used measure of software size in the industry. (We will discuss the 
issue of software size later in the book.) As the main cost of producing software is 

100r------------------------------, 
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60 

40 
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1955 1970 
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FIGURE 1.1. Hardware-software cost trends [Boe76]. 
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in the manpower employed, the cost of developing software is generally measured 
in terms of person-months of effort spent in development. And productivity is 
frequently measured in the industry in terms of DLOC per person-month. 

The current productivity in the software industry for writing fresh code ranges 
from 300 to 1000 DLOC per person-month. That is, for developing software, the 
average productivity per person, per month, over the entire development cycle is 
about 300 to 1000 DLOC. And software companies charge the client for whom 
they are developing the software upwards of $100,000 per person-year or more 
than $8,000 per person-month (which comes to about $50 per hour). With the 
current productivity figures of the industry, this translates into a cost per line of 
code of approximately $8 to $25. In other words, each line of delivered code costs 
between $8 and $25 at current costs and productivity levels! And even moderately 
sized projects easily end up with software of 50,000 LOC. (For projects like the 
software for the space shuttle, the size is millions of lines of code.) With this 
productivity, such a software project will cost between $0.5 million and $1.25 
million! 

Given the current compute power of machines, such software can easily be used 
on a workstation or a small network with a server. This implies that software that 
can cost more than a million dollars can ron on hardware that costs at most tens 
of thousands of dollars, clearly showing that the cost of hardware on which such 
an application can ron is a fraction of the cost of the application software! This 
example clearly shows that not only is software very expensive, it indeed forms 
the major component of the total automated system, with the hardware forming a 
very small component. 

1.1.2 Late, Costly, and Unreliable 

There are many instances quoted about software projects that are behind schedule 
and have heavy cost overruns. The software industry has gained areputation of 
not being able to deliver on time and within budget. Consider the example of 
the V.S. Air Force command-and-control software project [Boe81]. The initial 
estimate given by the winning contractor was $400,000. Subsequently, the cost 
was renegotiated to $700,000, to $2,500,000, and finally to $3,200,000. The final 
project completion cost was almost 10 times the original estimate! Take another 
example from [Mcf89]. A Fortune 500 consumer products company plans to get an 
information system developed in nine months at the cost of $250,000. Two years 
later, after spending $2.5 million, the job was still not done, and it was estimated 
that another $3.6 million would be needed. The project was scrapped (evidently, the 
extra cost of $3.6 million was not worth the returns!). Many such disaster examples 
are given in [Mcf89, Rot89]. 

A survey reported in [Rot89] states that of the 600 firms surveyed, more than 35% 
reported having some computer-related development project that they categorized 
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as a runaway. And a runaway is not a project that is somewhat late or somewhat over 
budget-it is one where the budget and schedule are out of control. The problem has 
become so severe that it has spawned an industry of its own; there are consultancy 
companies that advise how to rein such projects, and one such company had more 
than $30 million in revenues from more than 20 clients [Rot89]. 

Similarly, a large number of instances have been quoted regarding the unreliability 
of software; the software does not do what it is supposed to do or does something 
it is not supposed to do. In one defense survey, it was reported that more than 70% 
of all the equipment failures were due to software! And this is in systems that are 
loaded with electrical, hydraulic, and mechanical systems. This just indieates that 
all other engineering disciplines have advanced far more than software engineering, 
and a system comprising of the products of varlous engineering disciplines finds 
that software is the weakest component. Failure of an early Apollo ftight was also 
attributed to software. Similarly, failure of a test firing of a missile in Asia was 
attributed to software problems. Many banks have lost millions of dollars due to 
inaccuracies and other problems in their software [Neu88]. 

Overall, the software industry has gained areputation of not delivering software 
within schedule and budget and of producing software systems of poor quality. 
There are numerous instances of projects that enforce this view. In fact, a whole 
column in Software Engineering Notes is dedieated to such instances. It is clear that 
cost and schedule overruns and the problem ofreliability are major contributors to 
the software crisis. 

A note about the cause of unreliability in software: Software failures are different 
from failures of, say, mechanieal or electrical systems. Products of these other 
engineering disciplines fail because ofthe change in physieal or electrical properties 
of the system caused by aging. A software product, on the other hand, never wears 
out due to age. In software, failures occur due to bugs or errors that get introduced 
during the design and development process. Hence, even though a software may 
fail after operating correctly for some time, the bug that causes that failure was there 
from the start! It only got executed at the time of the failure. This is quite different 
from other systems, where if a system fails, it generally means that sometime before 
the failure the system developed some problem (due to aging) that did not exist 
earlier. 

1.1.3 Problem of Change and Rework 

Once the software is delivered and deployed, it enters the maintenance phase. All 
systems need maintenance, but for other systems it is largely due to problems 
that are introduced due to aging. Why is maintenance needed for software, when 
software does not age? Software needs to be maintained not because some of its 
components wear out and need to be replaced, but because there are often some 
residual errors remaining in the system that must be removed as they are discovered. 
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It is commonly believed that the state ofthe art today is such that almost all software 
that is developed has residual errors, or bugs, in them. Many of these surface only 
after the system has been in operation, sometimes for a long time. These errors, 
once discovered, need to be removed, Ieading to the software getting changed. This 
is sometimes called corrective maintenance. 

Even without bugs, software frequently undergoes change. The main reason is that 
software often must be upgraded and enhanced to include more features and pro
vide more services. This also requires modification of the software. It has been 
argued that once a software system is deployed, the environment in which it oper
ates changes. Hence, the needs that initiated the software development also change 
to reftect the needs of the new environment. Hence, the software must adapt to 
the needs of the changed environment. The changed software then changes the 
environment, which in turn requires further change. This phenomenon is some
times called the law 01 software evolution. Maintenance due to this phenomenon 
is sometimes called adaptive maintenance. 

Though maintenance is not considered apart of software development, it is an ex
tremely important activity in the life of a software product. If we consider the total 
life of software, the cost of maintenance generally exceeds the cost of developing 
the software! The maintenance-to-development-cost ratio has been variously sug
gested as 80:20, 70:30, or 60:40. Figure 1.1 also shows how the maintenance costs 
are increasing. 

Maintenance work is based on existing software, as compared to development 
work that creates new software. Consequently, maintenance revolves around un
derstanding existing software and maintainers spend most of their time trying to 
understand the software they have to modify. Understanding the software involves 
understanding not only the code but also the related documents. During the mod
ification of the software, the effects of the change have to be c1early understood 
by the maintainer because introducing undesired side effects in the system during 
modification is easy. To test whether those aspects of the system that are not sup
posed to be modified are operating as they were before modification, regression 
testing is done. Regression testing involves executing old test cases to test that no 
new errors have been introduced. 

Thus, maintenance involves understanding the existing software (code and related 
documents), understanding the effects of change, making the changes-to both 
the code and the documents-testing the new parts (changes), and retesting the 
old parts that were not changed. Because often during development, the needs 
of the maintainers are not kept in mind, few support documents are produced 
during development to help the maintainer. The complexity of the maintenance 
task, coupled with the neglect of maintenance concems during development, makes 
maintenance the most costly activity in the life of software product. 
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Maintenance is one form of change or software rework that typically is done af
ter the software development is completed and the software has been deployed. 
However, there are other forms of changes that lead to rework during the software 
development itself. 

One of the biggest problems in software development, particularly for large and 
complex systems, is that what is desired from the software (i.e., the requirements) 
is not understood. To completely specify the requirements, all the functionality, 
interfaces, and constraints have to be specified before software development has 
commenced! In other words, for specifying the requirements, the c1ients and the 
developers have to visualize what the software behavior should be once it is devel
oped. This is very hard to do, particularly for large and complex systems. So, what 
generally happens is that the requirements are "frozen" when it is believed that 
they are generally in good shape, and then the development proceeds. However, 
as time goes by and the understanding of the system improves, the c1ients fre
quently discover additional requirements they had not specified earlier. This leads 
to requirements getting changed when the development may have proceeded to 
the coding, or even testing, stage! This change leads to rework; the requirements, 
the design, the code all have to be changed to accommodate the new or changed 
requirements. 

Just uncovering requirements that were not understood earlier is not the only reason 
for this change and rework. Software development of large and complex systems 
can take a few years. And with the passage of time, the needs of the clients change. 
After all, the current needs, which initiate the software product, are a reftection of 
current times. As times change, so do the needs. And, obviously, the c1ients want 
the system deployed to satisfy their most current needs. This change of needs while 
the development is going on also leads to rework. 

In fact, changing requirements and associated rework are a major problem of the 
software industry. It is estimated that rework costs are 30 to 40% of the development 
cost [Boe87]. In other words, of the total development effort, rework due to various 
changes consume about 30 to 40% of the effort! No wonder change and rework 
is a major contributor to the software crisis. However, unlike the issues discussed 
earlier, the problem of rework and change is not just a reftection of the state of 
software development, as changes are frequently initiated by c1ients as their needs 
change. However, change is a reality that has to be dealt with properly. 

1.2 Software Engineering Problem 

It is c1ear that the current state of software leaves much to be desired. A primary 
reason for this is that approaches to software development are frequently ad hoc 
and programming-centered. The ad hoc or programming-centered approach (which 
considers developing software essentially as a programming exercise) may work 
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for small projects, but for the problem domain that we are interested in (i.e., large 
industrial-quality software), these approaches generally do not work. If we have 
to control this software crisis, some methodical approach is needed for software 
development. This is where software engineering comes in. Software engineering 
is defined as [IEE87]: 

Software engineering is the systematic approach to the development, 
operation, maintenance, and retirement of software. 

Another definition from the economic and human perspective is given by Boehm 
[Boe81] by combining the dictionary's definition of engineering with its definition 
of software. His definition states: 

Software Engineering is the application of science and mathematics by 
which the capabilities of computer equipment are made useful to man 
via computer programs, procedures, and associated documentation. 

The use of the terms systematic approach or mathematics and science for the 
development of software means that software engineering provides methodologies 
for developing software as elose to the scientific method as possible. That is, these 
methodologies are repeatable, and if the methodology is applied by different people, 
similar software will be produced. In essence, the goal of software engineering is 
to take software development eloser to science and away from being an art. Note 
also that the focus of software engineering is not developing software per se, but 
methods far developing software. That is, the focus is on developing methods that 
can be used by various software projects. 

The phrase usable to man emphasizes the needs of the user and the software's 
interface with the user. This definition implies that user needs should be given 
due importance in the development of software, and the final pro gram should give 
importance to the user interface. With this definition of software engineering, let 
us now discuss a few fundamental problems that software engineering faces. 

1.2.1 The Problem of Scale 

A fundamental problem of software engineering is the problem of scale; develop
ment of a very large system requires a very different set of methods compared to 
developing a small system. In other words, the methods that are used for developing 
small systems generally do not scale up to large systems. An example will illus
trate this point. Consider the problem of counting people in a room versus taking a 
census of a country. Both are essentially counting problems. But the methods used 
for counting people in a room (probably just go row-wise or column-wise) will 
just not work when taking a census. Different set of methods will have to be used 
for conducting a census, and the census problem will require considerably more 
management, ,Organization, and validation, in addition to counting. 



www.manaraa.com

Formal 

1.2. Software Engineering Problem 9 

Large 
Complex 
Projects 

Informal'--_______ --'-______ _ 

Informal Formal 

Development Methods 

FIGURE 1.2. The problem of scale. 

Similarly, methods that one can use to develop programs of a few hundred lines 
cannot be expected to work when software of a few hundred thousand lines needs 
to be developed. A different set of methods have to be used for developing large 
software. Any large project involves the use of technology and project management. 
For software projects, by technology we mean the methods, procedures, and tools 
that are used. In small projects, informal methods for development and management 
can be used. However, for large projects, both have to be much more formal, as 
shown in Figure 1.2. 

As shown in the figure, when dealing with a small software project, the technology 
requirement is low (all yoü need to know is how to program and a bit of testing) 
and the project management requirement is also low (who needs formal manage
ment for developing a IOO-line program?). However, when the scale changes to 
large systems, to solve such problems properly, it is essential that we move in both 
directions-the methods used for development need to be more formal, and the 
project management for the development project also needs to be more formal. For 
example, if we leave 50 bright programmers together (who know how to develop 
small pro grams weIl) without formal management and development procedures 
and ask them to develop an on-line inventory control system for an automotive 
manufacturer, it is highly unlikely that they will produce anything of use. To suc
cessfully execute the project, a proper method of development has to be used and 
the project has to be tightly managed to make sure that methods are indeed being 
followed and that cost, schedule, and quality are under control. 

Though there is no universally acceptable definition of what is a "smaIl" project 
and what is a "Iarge" project, one can use the definitions used in the COCOMO 
cost model (to be discussed later in the book) to get an idea of scale. According 
to this model, a project is small if its size in thousands of delivered lines of code 
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(KDLOC) is 2 KDLOC, intermediate if the size is 8 KDLOC, medium if the size 
is 32 KDLOC, and Zarge if the size is 128 KDLOC (or larger). 

1.2.2 Cast, Schedule, and Quality 

An engineering discipline, almost by definition, is driven by practical parameters 
of cost, schedule, and quality. A solution that takes enormous resources and many 
years may not be acceptable. Similarly, a poor-quality solution, even at low cost, 
may not be of much use. Like all engineering disciplines, software engineering is 
driven by the tbree major factors: cost, schedule, and quality. In some contexts, 
cost and quality are considered the primary independent factors, as schedule can 
be modeled as cost or considered as an independent variable whose value is more 
or less fixed for a given cost. We will also consider these as the primary driving 
factors. 

We have already seen that the current state of affairs is that producing software is 
very expensive. Clearly, a practical and consistent goal on software engineering is 
to come up with methods ofproducing software more cheaply. Cost is a consistent 
driving force in software engineering. 

The cost of developing a system is the cost of the resources used for the system, 
which, in the case of software, are the manpower, hardware, software, and other 
support resources. Generally, the manpower component is predominant, as software 
development is largely labor-intensive and the cost of the computing systems (the 
other major cost component) is now quite low. Hence, the cost of a software project 
is measured in terms of person-months, i.e., the cost is considered to be the total 
number of person-months ·spent in the project. To convert this to a dollar amount, 
it is muItiplied with the dollar cost per person-month. In defining this unit cost for 
a person-month, the other costs are included (called overheads). In this manner, 
by using person-months for specifying cost, the entire cost can be modeled. 

Schedule is an important factor in many projects. Business trends are dictating that 
the time to market of a product should be reduced; that is, the cycle time from 
concept to delivery should be small. Any business with such a requirement will 
also require that the cycle time for building a software needed by the business 
be small. Similarly, there are examples, particularly in the financial sector, where 
the window of opportunity is small. Hence, any software needed to exploit this 
window of opportunity will have to be done within a small cycle time. Due to these 
types of applications, where a reduced cycle time is highly desirable even if the 
costs become higher, there is a growing interest in rapid application deveZopment 
(RAD). 

One of the major factors driving any production discipline is quality. In the current 
times, quality is the main "mantra," and business strategies are designed around 
quality. Clearly, developing methods that can produce high-quality software is 
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FIGURE 1.3. Software quality factors [CM78]. 

another fundamental goal of software engineering. However, while cost is generaIly 
weIl understood, the concept of quality in the context of software needs further 
discussion. We can view quality of a software product as having three dimensions 
[CM78]: 

• Product Operation 

• Product Transition 

• Product Revision 

The first factor, product operations, deals with quality factors such as cOITectness, 
reliability, and efficiency. Product transition deals with quality factors like portabil
ity and interoperability. Product revision is concerned with those aspects related to 
modification of programs, inc1uding factors such as maintainability, and testability. 
These three dimensions and the different factors for each are shown in Figure 1.3 
[CM78]. 

COITectness is the extent to which a pro gram satisfies its specifications. Reliability 
is the property that defines how weIl the software meets its requirements. Efficiency 
is a factor in aIl issues relating to the execution of software; it inc1udes such 
considerations as response time, memory requirement, and throughput. Usability, 
or the effort required to leam and operate the software properly, is an important 
property that emphasizes the human aspect of the system. Maintainability is the 
effort required to locate and fix eITors in operating programs. Testability is the effort 
required to test to ensure that the system or a module performs its intended function. 
Flexibility .is the effort required to modify an operational program (perhaps to 
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enhance its functionality). Portability is the effort required to transfer the software 
from one hardware configuration to another. Reusability is the extent to which parts 
of the software can be reused in other related applications. Interoperability is the 
effort required to couple the system with other systems. 

There are two important consequences of having multiple dimensions to quality. 
First, software quality cannot be reduced to a single number (or a single parame
ter). And second, the concept of quality is project-specific. For some ultra-sensitive 
project, reliability may be of utmost importance but not usability, while in some 
commercial package for playing games on a PC, usability may be of utmost impor
tance and not reliability. Hence, for each software development project, a project
specific quality objective must be specified before the development starts, and the 
goal of the development process should be to satisfy that quality objective. 

Despite the fact that there are many factors, reliability is generally accepted to be 
main quality criteria. As unreliability of software comes due to presence of defects 
in the software, one measure of quality is the number of defects in the software per 
unit size (generally taken to be thousands of lines of code, or KLOC). With this as 
the major quality criteria, the quality objective of software engineering becomes 
to reduce the number of defects per KLOC as much as possible. Due to this, defect 
tracking is another essential activity that must be done in a software project, in 
addition to tracking cost. Current best practices in software engineering have been 
able to reduce the defect density to less than 1 defect per KLOC. It should be 
pointed out that before this definition of quality is used, what a defect is has to be 
clearly defined. A defect could be some problem in the software that causes the 
software to crash or a problem that causes an output to be not properly aligned 
or one that misspells some word, etc. The exact definition of what is considered 
a defect will clearly depend on the project or the standards of the organization 
developing the project (typically it is the latter). 

1.2.3 The Problem of Consistency 

Though high quality, low cost (or high productivity), and small cycle time are the 
primary objectives of any project, for an organization there is another goal: consis
tency. An organizati6n involved in software development does not just want low 
cost and high quality for a project, but it wants these consistently. In other words, a 
software development organization would like to produce consistent quality with 
consistent productivity. Consistency of performance is an important factor for any 
organization; it allows an organization to predict the outcome of a project with rea
sonable accuracy, and to improve its processes to produce higher-quality products 
and to improve its productivity. 

Achieving consistency is an important problem that software engineering has 
to tackle. As can be imagined, this requirement of consistency will force some 
standardized procedures to be followed for developing software. 
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1.3 The Software Engineering Approach 

Based on the preceding discussions, we can say that the basic objective of software 
engineering is to: Develop methods and procedures for software development that 
can scale up for large systems and that can be used to consistently produce high
quality software at low cost and with a small cycle time. That is, the key objectives 
are consistency, low cost, high quality, small cyc1e time, and scalability. 

The basic approach that software engineering takes is to separate the development 
process from the developed product (Le., the software). The premise is that the de
velopment process, or the software process, controls the quality, scalability, consis
tency, and productivity. Hence to satisfy the objectives, one must focus on the soft
ware process. Design of proper software processes and their control then becomes 
the primary goal of software engineering. It is this focus on process that distin
guishes it from most other computing disciplines. Most other computing disciplines 
focus on some type of product-algorithms, operating system, databases, etc.
while software engineering focuses on the process for producing the products. It 
is essentially the software equivalent of "manufacturing engineering." 

The software process must necessarily have components of project management, 
in addition to procedures for development. Otherwise, as we discussed, scalability 
will not be achieved. To better manage the development process and to achieve 
consistency, it is essential that the software development be done in phases. Hence, 
a phased development process is central to the software engineering approach. 
Besides having a phased development process, it is essential that monitoring of a 
project for quality and cost involve objective means rather than subjective methods. 
Otherwise, the scalability is limited: it is possible to handle a small project without 
measuring anything and 'using "gut-feel" type of management, but such methods 
are unlikely to work for projects that involve many people (possibly hundreds) 
and last many months. We briefty discuss these fundamental approaches here. The 
software process, being the central concept of software engineering, is discussed 
in detail in the next chapter. 

1.3.1 Phased Development Process 

A development process consist of various phases, each phase ending with a de
fined output. The phases are performed in an order specified by the process model 
being followed. The main reason for having a phased process is that it breaks the 
problem of developing software into successfully performing a set of phases, each 
handling a different concern of software development. This ensures that the cost 
of development is lower than what it would have been if the whole problem was 
tackled together. Furthermore, a phased process allows proper checking for qual
ity and progress at some defined points during the development (end of phases). 
Without this, one would have to wait until the end to see what software has been 
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produced. Clearly, this will not work for large systems. Hence, for managing the 
complexity, project tracking, and quality, all the development processes consist of a 
set of phases. A phased development process is central to the software engineering 
approach for solving the software crisis. 

Various process models have been proposed for developing software. In fact each 
organization that follows a process has its own version. We will discuss some of 
the common models in the next chapter. The different processes can have different 
activities. However, in general, we can say that any problem solving in software 
must consist of these activities: requirement specification for understanding and 
clearly stating the problem, design for deciding a plan for a solution, coding for im
plementing the planned solution, and testing for verifying the programs. For small 
problems, these activities may not be done explicitly, the start and end boundaries 
of these activities may not be clearly defined, and no written record of the activi
ties may be kept. However, for large systems, where the problem-solving activity 
may last a couple of years and where many people are involved in development, 
performing these activities implicitly without proper documentation and represen
tation will clearly not work, and each of these four problem solving activities has 
to be done formally. In fact, for large systems, each activity can itself be extremely 
complex, and methodologies and procedures are needed to perform it efficiently 
and correctly. Each of these activities is a major task for large software projects. 
These basic phases are briefly described here; each one of them will be discussed 
in more detail during the course of the book (there is at least one chapter for each 
of these phases). 

Requirements Analysis 

Requirements analysis is done in order to understand the problem the software 
system is to solve. The problem could be automating an existing manual process, 
developing a new automated system, or a combination of the two. For large systems 
that have many features, and that need to perform many different tasks, understand
ing the requirements of the system is a major task. The emphasis in requirements 
analysis is on identifying what is needed from the system, not how the system will 
achieve its goals. This task is complicated by the fact that there are often at least two 
parties involved in software development-a client and adeveloper. The developer 
has to develop the system to satisfy the client's needs. The developer usually does 
not understand the client's problem domain, and the client often does not under
stand the issues involved in software systems. This causes a communication gap, 
which has to be adequately bridged during requirements analysis. 

In most software projects, the requirements phase ends with a document describing 
all the requirements. In other words, the goal of the requirements specification 
phase is to produce the software requirements specijication document (also called 
the requirements document). The person responsible for the requirements analysis 
is often called the analyst. 
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There are two major activities in this phase: problem understanding or analysis and 
requirement specification. In problem analysis, the analyst has to understand the 
problem and its context. Such analysis typicaHy requires a thorough understanding 
of the existing system, parts of which have to be automated. A dear understanding 
is needed of the important data entities in the system, major centers where action 
is taken, the purpose of the different actions that are performed, and the inputs and 
outputs. This requires interacting with dients and end users, as weH as studying 
the existing manuals and procedures. With the analysis of the current system, the 
analyst can understand the reasons for automation and what effects the automated 
system might have. 

Understanding the existing system is usuaHy just the starting activity in problem 
analysis, and it is relatively simple. The goal of this activity is to understand the re
quirements of the new system that is to be developed. Understanding the properties 
of a system thlit does not exist is more difficult and requires creative thinking. The 
problem is more complex because an automated system offers possibilities that do 
not exist otherwise. Consequently, even the dient may not really know the needs of 
the system. The analyst has to make the dient aware of the new possibilities, thus 
helping both dient and analyst determine the requirements for the new system. 

Once the problem is analyzed and the essentials understood, the requirements must 
be specified in the requirement specification document. For requirement specifi
cation in the form of a document, some specification language has to be selected 
Ce.g., English, regular expressions, tables, or a combination ofthese). The require
ments document must specify all functional and performance requirements; the 
formats of inputs and outputs; and all design constraints that exist due to political, 
economic, environmental, and security reasons. In other words, besides the func
tionality required from the system, all the factors that may effect the design and 
proper functioning of the system should be specified in the requirements document. 
A preliminary user manual that describes all the major user interfaces frequently 
forms a part of the requirements document. 

Software Design 

The purpose of the design phase is to plan a solution of the problem specified by 
the requirements document. This phase is the first step in moving from the problem 
domain to the solution domain. In other words, starting with what is needed, design 
takes us toward how to satisfy the needs. The design of a system is perhaps the most 
critical factor affecting thc quality of the software; it has a major impact on the 
later phases, particularly testing and maintenance. The output of this phase is the 
design document. This document is similar to a blueprint or plan for the solution 
and is used later during implementation, testing, and maintenance. 

The design activity is often dh ided into two separate phases-system design and 
detailed design. System design, which is sometimes also called top-level design, 
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aims to identify the modules that should be in the system, the specifications of these 
modules, and how they interact with eaeh other to produee the desired results. At 
the end of system design all the major data structures, file formats, output formats, 
and the major modules in the system and their specifications are decided. 

During detailed design, the internal logic of each of the modules specified in 
system design is decided. During this phase further details of the data structures 
and algorithmic design of eaeh of the modules is specified. The logic of a module is 
usually specified in a high-level design description language, which is independent 
of the target language in which the software will eventually be implemented. 

In system design the foeus is on identifying the modules, whereas during detailed 
design the focus is on designing the logic for each of the modules. In other words, 
in system design the attention is on what eomponents are needed, while in detailed 
design how the components can be implemented in software is the issue. A design 
methodology is a systematic approach to ereating a design by application of a set 
of techniques and guidelines. Most methodologies focus on system design. 

Coding 

Onee the design is complete, most of the major decisions about the system have 
been made. However, many of the details about coding the designs, whieh often 
depend on the programming language chosen, are not specified during design. The 
goal of the coding phase is to translate the design of the system into code in a given 
programming language. For a given design, the aim in this phase is to implement 
the design in the best possible manner. 

The coding phase affects both testing and maintenance profoundly. Well-written 
code can reduce the testing and maintenance effort. Because the testing and main
tenance costs of software are much higher than the coding cost, the goal of coding 
should be to reduee the testing and maintenanee effort. Hence, during coding the 
focus should be on developing programs that are easy to read and understand, and 
not simply on developing pro grams that are easy to write. Simplicity and clarity 
should be strived for during the eoding phase. 

An important concept that helps the understandability of programs is structured 
programming. The goal of structured programrning is to linearize the control ftow in 
the pro gram. That is, the program text should be organized as a sequence of state
ments, and during exeeution the statements are executed in the sequence given 
in the program. For structured programming, a few single-entry-single-exit con
structs should be used. These constructs include selection (if-then-else) and itera
tion (while-do, repeat-until, ete.). With these constructs it is possible to eonstruet 
a program as a sequence of single-entry-single-exit constructs. 
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Testing 

Testing is the major quality control measure used during software development. 
Its basic function is to detect errors.in the software. During requirements analysis 
and design, the output is a document that is usually textual and nonexecutable. 
After the coding phase, computer pro grams are available that can be executed for 
testing purposes. This implies that testing not only has to uncover errors introduced 
during coding, but also errors introduced during the previous phases. Thus, the goal 
of testing is to uncover requirement, design, and coding errors in the programs. 
Consequently, different levels of testing are used. 

The starting point of testing is unit testing. In this, a module is tested separately and 
is often performed by the coder himself simuItaneously along with the coding of the 
module. The purpose is to exercise the different parts of the module code to detect 
coding errors. After this, the modules are gradually integrated into subsystems, 
which are then integrated to eventually form the entire system. During integration 
of modules, integration testing is performed to detect design errors by focusing on 
testing the interconnection between modules. 

After the system is put together, system testing is performed. Here the system is 
tested against the system requirements to see if all the requirements are met and if 
the system performs as specified by the requirements. Finally, acceptance testing 
is performed to demonstrate to the client, on the real-life data of the client, the 
operation of the system. 

Testing is an extremely critical and time-consuming activity. It requires proper 
planning of the overall testing process. Frequently the testing process starts with 
a test plan that identifies all the testing-related activities that must be performed 
and specifies the schedule, allocates the resources, and specifies guidelines for 
testing. The test plan specifies conditions that should be tested, different units to 
be tested, and the manner in which the modules will be integrated together. Then 
for different test units, a test case specification document is produced, which lists 
all the different test cases, together with the expected outputs. During the testing 
of the unit, the specified test cases are executed and the actual resuIt compared 
with the expected output. The final output of the testing phase is the test report 
and the error report, or a set of such reports (one for each unit tested). Each test 
report contains the set of test cases and the resuIt of executing the code with these 
test cases. The error report describes the errors encountered and the action taken 
to remove the errors. 

1.3.2 Project Management and Metries 

As stated earlier, a phased development process is central to the software engineer
ing approach. However, a development process does not specify how to allocate 
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CASE STUDY 

As with previous chapters, we end this chapter by performing the object-oriented 
design of the case study. First we dißcuss the application of the design process on 
the case study, i.e., how the design for the case study is created, and then we give 
the specifications of the final design that is created. While discussing the creation 
of design, we provide only the main steps to give an idea of the design activity. 

Object-Oriented Design 

We start the design activity by performing the object modeling. During object 
modeling, the basic focus is on identifying the object classes in the problem domain, 
relationships between them, hierarchies, attributes of classes, and major services 
that are evident from studying the problem. From the problem specification, given 
in Chapter 3, we can clearly identify the following objects: TimeTable, Course, 
Room, LectureSlot, CToBeSched (course to be scheduled), InputFile_l, and 
InputFile_2. From the problem, it is clear that TimeTable, an important object 
in the problem domain, is an aggregation of many TimeTableEntry, each of 
which is a collection of a Course, a Room where the course is scheduled, and a 
LectureSlot in which the course is scheduled. 

On looking at the description of file 1, we find that it contains a list of rooms, courses, 
and time slots that is later used to check the validity of entries in file 2. This results 
in the objects RoomDB, CourseDB, and SlotDB, each of which is an aggregation 
of many members of Room, Course, and Slot, respectively. Similarly, on looking 
at the description of file 2, we find that it contains a TableOfCToBeSched, which 
is an aggregation of many CToBeSched. 

On studying the problem further and considering the scheduling constraints im
posed by the problem, it is clear that for scheduling, the courses have to be divided 
into four different types-depending on whether the course is a UG course or a PG 
course, and whether or not preferences are given. In other words, we can specialize 
CToBeSched to produce four different subclasses: PGwi thPref, UGwi thPref , 
PGwi thoutPref, and UGwi thoutPref. The classes that represent courses with 
preferences will contain a list of preferences, which is a list of LectureSlots. 
This is the only hierarchy that is evident from examining the problem. 

Considering the attributes of the object classes, the problem clearly specifies that 
a Room has the attributes roomNo and capacity; a LectureSlot has one major 
attribute, the siat it represents; and a Course has caurseName as an attribute. A 
CToBeSched contains a Course and has enrallment as an attribute. 

Considering the services for the object classes, we can clearly identify from the 
problem specification some services like scheduieAll() on TableOfCToBeSched, 
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which schedules aB the courses, printTable() for the TimeTable, setentry() and 
getentry() for a TimeTableEntry, and insert() and lookup() operations for the var
ious 1ists. The initial object diagram after object modeling is shown in Figure 6.13. 

The system here is not an interactive system; hence dynamic modeling is rather 
straightforward. Tbe normal scenario is that the inputs are given and the outputs are 
produced. Tbere are at least two different normal scenarios possible, depending on 
whether there are any conflicts (requiring conflicts and their reasons to be printed) 
or not (in which case only the tirnetable is printed). The latter normal scenario does 
not reveal any new operations. However, a natural way to model the first scenario 
is to have an object ConflictTable into wh ich different conflicts for the different 
time slots of different courses are stored, and from where they are later printed. 
Hence, we add this object and model itas an aggregationofConflictTableEntry, 
with an operation insertEntry() to add a conflict entry in the table and an operation 
printTable() to print the conflicts. Then there are a number of exception scenarios
one for each possible error in the input. In each case, the scenario shows that a proper 
error message is to be output. This requires that operations needed on objects like 
Room, Course and Slot check their formats for correctness. Hence, validation 
operations are added to these objects. 

The functional model for the problem was given in Chapter 5. It shows that from 
file I, roomDB, courseDB, and slotDB need to be formed and the entries for each 
of these have to be obtained from the file and validated. As validation functions 
are already added, this adds the function for producing the three lists, called build_ 
CRS.DBs(). Similarly, the DFD clearly shows that on InputFile_2 a function to 
build the table of courses to be scheduled is needed, leading to the adding of the 
operation buildCtoBeSched(). While building this table, this operation also divides 
them into the four groups of courses, as done in the DFD. Tbe DFD shows that 
an operation to schedule the courses is needed. This operation (scheduleAll() is 
already there. Although the high-level DFD does not show, but a further refine
ment of the bubble for "schedule" shows that bubbles are needed for scheduling 
PG courses with preferences, UG courses with preferences, PG courses without 
preferences, aud UG courses without preferences (they are reflected in the struc
ture chart as modules). These bubbles get reflected as schedule() operations on aU 
four subclasses-PGwithPref, UGwi thPref, PGwihoutPref s, and UGwi th
outPrefs. The DFD also has bubbles for printing the timetable and conflicts. 
These get translated into print operations on TimeTable, TimeTableEntry, 
ConflictTable, and ConflictTableEntry. 

Now we come to the last steps of considering implementation concems. Many new 
issues come up here. First, we decided to have a gen('ric template class, which can be 
used to implement the various DBs, as all DBs are performing similar functions. 
Hence, we defined a template class List. When considering the main issue of 
scheduling, we notice that scheduling UG courses with preferences, as discussed 
in the Chapter 5, is not straightforward, as the system has to ensure that it does not 
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is http://www.springer-ny.comlsupplementsfjalote. Some tools that have been 
used for evaluating the design, code, or testing of the case study are also available 
from the horne page. 

The structure of most chapters in this book is sirnilar. Most chapters begin by 
discussing the fundamental concepts for that particular phase. Then the methods 
for performing the activity for that phase are discussed. This is followed by the 
verification methods used for that phase. Metrics relevant to the phase are discussed 
next, along with some discussion on how metrics can be used for monitoring and 
control activities for that phase. Most chapters end with a discussion of the case 
study and adescription of the case study outputs for that particular phase. Here we 
give abrief outline of each of the chapters. 

As the concept of process is central to the software engineering approach, Chapter 
2 is devoted to "Software Processes." First, the three major entities of software 
engineering - processes, projects, and products - are defined. The major component 
processes of a software process are then identified, along with the basic properties 
of a software process. Then each component process is discussed in some detail 
through the rest of the chapter. Various models that have been proposed for the 
development process are discussed. The role of metrics in the project management 
process and the process management process is also discussed. 

Chapter 3 is entitled "Software Requirements Analysis and Specification" and 
discusses the different aspects of this phase. The desirable qualities of the re
quirements document are discussed, along with the different aspects the document 
should specify. Different approaches for problem analysis and representation are 
covered, and abrief description of some ofthe tools available forrequirements anal
ysis is included. The validation methods and metrics of interest for this phase are 
described. The chapter ends with problem analysis and the requirements document 
for the case study. 

Chapter 4 is entitled "Planning a Software Project" and discusses the different 
issues relating to software development project planning. The topics covered are 
cost estimation, schedule and milestone plan, personnel plan, team structure, soft
ware quality assurance plans, configuration management plans, project monitoring 
plans, and risk management. For cost and schedule planning, different models are 
described. In quality assurance plans, general methods of monitoring, including 
reviews, are discussed. For risk management, different activities for performing 
risk management are discussed. A project plan for the case study is then presented. 

Chapter 5 discusses "Function-Oriented Design." We consider design as a two
level process combining system design and detailed design (detailed design is 
discussed in Chapter 7.). For system design, two major approaches have emerged
function-oriented design and object-oriented design. In Chapter 5 we first discuss 
the basic principles of design, including problem partitioning, divide and conquer, 
top-down refinement, modularity and abstraction. We then describe one design 
technique: tM structured design methodology, which is a widely used function-
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oriented design methodology. Different methods for verifying a system design, and 
metrics applicable for a function-oriented system design are also discussed. For 
the case study, we follow the structured design methodology and give the entire 
system design. We also demonstrate how metrics are used to improve the design 
of the case study. 

In Chapter 6 we discuss "Object-Oriented design." The basic principles behind 
the object-oriented design are first discussed, followed by a design methodology. 
Some metrics that can be applied to an object-oriented design are then described. 
The chapter ends with a complete description of the object-oriented design for the 
case study. 

In Chapter 7 we discuss the issue of "Detailed Design." The first step in designing 
a module is to specify the module formally and understand it clearly. We discuss 
some methods of formally specifying modules that support functional or data ab
stractions. For detailed design we discuss the method of stepwise refinement and 
the program design language (PDL). Different methods for verification and some 
metrics for complexity, cohesion, and coupling are discussed. 

Chapter 8, "Co ding" , discusses the issues relating to programming. The basic 
principles for developing pro grams are discussed. These include structured pro
gramming, information hiding, programming style, and intern al documentation. 
Many methods for verification exist for pro grams. In this chapter we discuss code 
reading, data flow analysis, symbolic execution, program proving, unit testing, code 
reviews and walkthroughs. Metrics discussed include size metrics and complexity 
analysis. 

Chapter 9, the last chapter, discusses "Testing." We first clarify the concepts of 
faults, errors, failures, and reliability. Different levels of testing that are usually 
used and their various purposes are defined. The importance of the psychology of 
testing is discussed, as are the two basic approaches to testing (functional testing 
and structural testing). Different heuristics for generating test cases for functional 
testing are described. For the structural testing approach, control flow-based test
ing, data flow-based testing, and mutation testing are discussed. The issues and 
techniques for testing object-oriented programs are described next. The basic met
ric we describe is reliability assessment, and we describe one model for reliability 
estimation. The test plan and the test case specifications for the case study are 
given. 

1. Suppose a pro gram for solving a problem costs C, and a programming product 
for solving that problem costs 9C. Where do you think this extra 8C cost is 
spent? Suggest a possible breakdown of this extra cost. 
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2. If the primary goal is to make software maintainable, list some of the things 
you will do and some of the things you will not do during 1) design, 2) coding, 
and 3) testing. 

3. If you are given extra time to improve the reliability of the final product 
developing a software product, how would you distribute this extra time? 

4. List some possible problems that can come up if the methods you use for 
developing small software are used for developing large software systems. 

5. Suggest ways of reducing the cost due to rework. 

6. Suggest some ways to detect software errors in the early phases (when im
plementation is not yet complete). 

7. What are the major reasons for having a phased process? How does it help in 
project management? 

8. If absolutely no metrics are used, can you manage, or even define, a project? 
What is the bare minimum set of metrics that you must use for a development 
project? 
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Software Processes 

As we saw in the previous chapter, the concept of process is at the heart of the 
software engineering approach. According to Webster, the term process means 
"a particular method of doing something, generally involving a number of steps 
or operations." In software engineering, the phrase software process refers to the 
method of developing software. 

A software process is a set of activities, together with ordering constraints among 
them, such that if the activities are performed properly and in accordance with the 
ordering constraints, the desired result is produced. The desired result is, as stated 
earlier, high-quality software at low cost. Clearly, a process that does not scale 
up (i.e., cannot handle large software projects) or cannot produce good-quality 
software (i.e., good-quality software is not the outcome) is not a suitable process. 
In this chapter, we will discuss the concept of software processes, the component 
processes of a software process, and some models that have been proposed. 

2.1 Software Process 

In an organization whose major business is software development, there are typ
ically many processes simultaneously executing. Many of these do not concern 
software engineering, though they do impact software development. These could 
be considered non software-engineering process models [RV95]. Business process 
models, social process models, and training models, are all examples of processes 
that come under this. These processes also affect the software development activity 
but are beyond the purview of software engineering. 
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The process that deals with the technical and management issues of software de
velopment is called a software process. Clearly, many different types of activities 
need to be performed to develop software. As we have seen earlier, a software 
development project must have at least development activities and project man
agement activities. All these activities together comprise the software process. 
As different type of activities are being performed, which are frequently done by 
different people, it is better to view the software process as consisting of many 
component processes, each consisting of a certain type of activity. Each of these 
component processes typically has a different objective, though these processes 
obviously cooperate with each other to satisfy the overall software engineering 
objective. 

In this section we will define the major component processes of a software process 
and what their objectives are. Before we do that, let us first c1early understand the 
three important entities that repeatedly occur in software engineering-software 
processes, software projects, and software products-and their relationship. 

2.1.1 Processes, Projects, and Products 

A software process, as mentioned earlier, specifies a method of developing soft
ware. A software project, on the other hand, is a development project in which a 
software process is used. And software products are the outcomes of a software 
project. Each software development project starts with some needs and (hopefully) 
ends with some software that satisfies those needs. A software process specifies 
the abstract set of activities that should be performed to go from user needs to final 
product. The actual act of executing the activities for some specific user needs is 
a software project. And all the outputs that are produced while the activities are 
being executed are the products (one of which is the final software). One can view 
the software process as an abstract type, and each project is done using that process 
as an instance of this type. In other words, there can be many projects for a process 
(i.e., many projects can be done using a process), and there can be many products 
produced in a project. This relationship is shown in Figure 2.1. 

Software Process 

/11 \~ 
Project1 Projectj Projecln 

/I~ 
Product1 Product2 Productm 

FIGURE 2.1. Processes, projects, and products. 
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A pertinent question that comes up is if the sequence of activities is provided by 
the process, what is the difficulty in following it in a project? First, the sequence 
of activities specified by the process is typically at an abstract level because they 
have to be usable for a wide range of projects. Hence, "implementing" them in a 
project is not straightforward. To clarify this, let us take the example of traveling. A 
process for traveling to a destination will be something like this: Set objectives for 
the travel (tourism, business, meeting friends, etc.), determine the optimal means of 
traveling (this will depend on the objective), if driving is best determine what type 
of vehicle is most desired (car, truck, or camper), get a detailed map to reach the 
destination, plan details of the trip, get sufficient money, rent the car, etc. If flying to 
the destination is best, then book flights, reserve a car at the destination if needed, 
etc. In asense, the process provides a "checklist," with an ordering constraint (e.g., 
renting a car as a first step is suboptimal). If one has to go from New York to 
Orlando (a specific project), then even with this process, a considerable effort is 
required to reach Orlando. And this effort is not all passive; one has to be alert and 
active to achieve this goal (e.g., preparing a map and following the map are not 
passive or trivial tasks). 

Overall, the process specifies activities at an abstract level that are not project
specific. It is a generic set of activities that does not provide a detailed roadmap for 
a particular project. The detailed roadmap for a particular project is the project plan 
that specifies what specific activities to perform for this particular project, when, 
and how to ensure that the project progresses smoothly. In our travel example, the 
project plan to go from New York to Orlando will be the detailed marked map 
showing the route, with other details like plans for night halts, getting gas, and 
breaks. 

It should be clear that it is the process that drives a projecL A process limits the 
degrees of freedom for a project by specifying what types of activities must be done 
and in what order. Further restriction on the degrees of freedom for a particular 
project are specified by the project plan, which, in itself, is within the boundaries 
established by the process (Le., a project plan cannot include performing an activity 
that is not there in the process). With this, the hope is that one has the "shortest" (or 
the most efficient) path from the user needs to the software satisfying these needs. 

As each project is an instance of the process it follows, it is essentially the pro
cess that determines the expected outcomes of a projecL Due to this, the focus of 
software engineering is heavily on the process. 

2.1.2 Component Software Processes 

The three basic type of entities that software engineering deals with-processes, 
project, and products-require different processes. The major process dealing with 
products is the development process responsible for producing the desired product 
(i.e., the software) and other products (e.g., user manual, and requirement spec-
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ification). The basic goal of this process is to develop a product that will satisfy 
the customer. A software project is clearly a dynamic entity in which activities 
are performed, and project management process is needed to properly control this 
dynamic activity, so that the activitiesdo not take the project astray but all activities 
are geared toward reaching the project goal. For large projects, project manage
ment is perhaps even more important than technical methods for the success of 
the project. Hence, we can clearly identify that there are two major components in 
a software process-a development process and a project management process
corresponding to the two axes in Figure 1.2. The development process specifies the 
development and quality assurance activities that need to be performed, whereas 
the management process specifies how to plan and control these activities so that 
project objectives are met. 

The development process and the project management process both aim at sat
isfying the cost and quality objectives of the project. However, as we have seen, 
change and rework in a project occur constantly, and any software project has to 
deal with the problems of change and rework satisfactorily. As the development 
processes generally cannot handle change requests at an arbitrary point in time, to 
handle the inevitable change and rework requests another processes called software 
configuration control process, is generally used. The objective of this component 
process is to primarily deal with managing change, so that the cost and quality 
objectives are met and the integrity of the products is not violated despite these 
change requests. 

Overall, for a particular project, to satisfy the objectives and handle the realities 
of software, at least three major constituent processes are needed: development 
process, project management process, and configuration control process. (One can 
think of other processes to~, e.g., training process or business process, but these 
can be considered minor processes as far as software engineering is considered.) 
It should be clear that both the project management process and the configuration 
control process depend on the development process. As the management process 
aims to control the development process, it clearly depends on the activities in the 
development process. Though the configuration control process is not as closely 
tied to the development process as the management process is, what changes to 
allow and how to process and manage a change depend on the development process, 
as the effect of the change depends on methods used. For this reason there is 
some sort of primacy of the development process, which is reflected in the fact 
that models have generally been proposed for the development processes. The 
management process, for example, is typically developed after the development 
process has been adopted. 

These three constituent processes focus on the projects and the products. In fact, 
they can be all considered as comprising product engineering processes, as their 
main objective is to produce the desired product. If the software process can be 
viewed as a stiltic entity, then these three component processes will suffice. How-
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ever, a software process itself is a dynamic entity, as it must change to adapt to 
our increased understanding about software development and availability of newer 
technologies and tools. Due to this, a process to manage the software process is 
needed. 

The process management process deals with the software process; its basic ob
jective is to improve the software process. By improvement, we mean that the 
capability of the process to produce quality goods at low cost is improved. For this, 
the current software process is studied, frequently by studying the projects that 
have been done using the project. Based on the analysis of the existing process, 
various aspeets of the development, project management, eonfiguration manage
ment, or other minor processes that affect software development are improved, 
thereby improving the software process. The whole process of understanding the 
current process, analyzing its properties, determining how to improve, and then 
affecting the improvement is dealt with by the process management proeess. 

The relations hip between these major component processes is shown in Figure 
2.2. These component proeesses are distinct not only in the type of aetivities 
performed in them, but typically also in the people who perform the aetivities 
specified by the process. In a typical project, development activities are performed 
by programmers, designers, testing personnei, librarians, writers, ete.; the project 
management process activities are performed by the project management; config
uration control process aetivities are performed by a group generally ealled the 
configuration control board; and the process management process aetivities are 
performed by a group called the software engineering process group (SEPG). 

In the rest of this chapter we will discuss each of these processes further. However, 
in the rest of the book we will focus primarily on proeesses relating to produet 
engineering, as process management is an advaneed topic beyond the seope of 
this book. The rest of the book essentially discusses various components of a 
development process (frequently called methodologies for the particular phase of 
the development process), and for eaeh component diseusses its relationship with 
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FIGURE 2.2. Software processes. 
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the project management process. We will use the term software process to mean 
product engineering processes, unless specified otherwise. 

2.2 Characteristics of a Software Process 

Before we discuss the constituent processes of a software process, let us discuss 
some desirable characteristics of the software process (besides the fact that it should 
provide effective development, management, and change management support). 
Tbe fundamental objectives of a process are the same as that of software engineer
ing (after all, the process is the main vehiele of satisfying the software engineering 
objectives), namely, optimality and scalability. Optimality means that the process 
should be able to produce high-quality software at low cost, and scalability means 
that it should also be applicable for large software projects. To achieve these objec
tives, a process should have some properties. We will discuss some of the important 
ones in this section. 

2.2.1 Predictability 

Predictability of a process determines how accurately the outcome of following a 
process in a project can be predicted before the project is completed. Predictability 
can be considered a fundamental property of any process. In fact, if a process is 
not predictable, it is of limited use. Let us see why. 

We have seen that effective project management is essential for the success of 
a project, and effective project management revolves around the project plan. A 
project plan typically contains cost and schedule estimates for the project, along 
with plans for quality assurance and other activities. Any estimation about a project 
is based on the properties of the project, and the capability or past experience of the 
organization. For example, a simple way of estimating cost could be to say, "this 
project A is very similar to the project B that we did 2 years ago, hence A's cost 
will be very elose to B 's cost." However, even this simple method implies that the 
process that will be used to develop project A will be same as the process used for 
project B, and the process is such that following the process the second time will 
produce similar results as the first time. That is, this assurnes that the process is 
predictable. If it was not predictable, then there is no guarantee that doing a similar 
project the second time using the process will incur a similar cost. 

Similar is the situation with quality. The fundamental basis for quality prediction is 
that quality of the product is determined largely by the process used to develop it. 
Using thisbasis, quality ofthe product of a project can be estimated or predicted by 
seeing the quality of the products that has been produced in the pa!'t by the process 
being used in the current project. In fact, effective management of quality assurance 
activities lar~ely depends on the predictability of the process. For example, for 



www.manaraa.com

2.2. Characteristics of a Software Process 29 

effective quality assurance, one method is to estimate what types and quantity of 
eITors will be detected at what stage of the development, and then use to determine 
if the quality assurance activities are being performed properly. This can only be 
done if the process is predictable; based on the past experience of such a process one 
can estimate the distribution of eITors for the CUITent project. Otherwise, how can 
anyone say whether detecting 10 eITors per 100 lines of code (LOC) during testing 
in the CUITent project is "acceptable"? With a predictable process, if the process is 
such that one expects 10 eITors per 100 LOC during testing, this means that the 
testing of this project was probably done properly. But, if past experience with the 
process shows that about 20 eITors per 100 LOC are detected during testing, then 
a carefullook at the testing of the CUITent project is necessary. 

It should be clear that if we want to use the past experience to control costs and 
ensure quality, we must use a process that is predictable. With low predictability, 
the experience gained through projects is of little value. A predictable process is 
also said to be under statistical control [Hum89]. A process is under statistical 
control if following the same process produces similar results. This is shown in 
Figure 2.3; the y-axis represents some property of interest (quality, productivity, 
etc.), and x-axis represents the projects. The dark line is the expected value of 
the property for this process. Statistical control implies that most projects will be 
within abound around the expected value. 

Statistical control also implies that the predictions for a process, which are generally 
based on the past performance of the process, are only probabilistic. If 20 eITors 
per 100 LOC have been detected in the past for a process (which is under statistical 
control), then it is expected that with a high probability, this is the range of eITors 
that will be detected during testing in future projects. Still, it is possible that in 
some projects this may not happen. This may happen if the programmer was very 
good, had a bout of excellence, or the code was easy, etc. Due to this, any data about 
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Projects 

FIGURE 2.3. Process under statistical control. 
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the current project beyond the range suggested by the process, implies that the data 
and the project should be carefully examined and allowed to "pass through" only 
if clear evidence is found that this is a "statistical aberration." 

It should be clear that if one hopes to consistendy develop software of high quality 
at low cost, it is necessary to have a process that is under statistical control. A 
predictable process is an essential requirement for ensuring good quality and low 
cost. Note that this does not mean that one can never produce high-quality software 
at low cost without following such a process. It is always possible that a set ofbright 
people might do it. However, what this means is that without such a process, such 
things cannot be repeated. Hence, if one wants quality consistently across many 
projects, having a predictable process is essential. Because software engineering 
is interested in general methods that can be used to develop different software, a 
predictable process forms the backbone of the software engineering methods. 

2.2.2 Support Testability and Maintainability 

We have already seen that in the life of software the maintenance costs generally 
exceed the development costs. Clearly, if we want to reduce the overall cost of soft
ware or achieve "global" optimality in terms of cost rather than "local" optimality 
in terms of development cost only, the goal of development should be to reduce 
the maintenance effort. That is, one of the important objectives of the development 
project should be to produce software that is easy to maintain. And the process 
should be such that it ensures this maintainability. 

Frequently, the scftware produced is not easily maintainable. This clearly implies 
that the development process used for developing software frequently does not have 
maintainability as a clear goal. One possible reason for this is that the developers 
frequently develop the software, instali it, and then hand it over to a different 
set of people called maintainers. The maintainers frequently don't even belong 
to the organization that developed the software but rather to the organization that 
contracted out the development. In such a situation, clearly there is no incentive for 
the developers to develop maintainable software, as they don't have to put in the 
effort for maintenance. This situation can only be alleviated if the developers are 
made responsible for maintenance, at least for a couple of years after the delivery 
of software. 

Even in development, coding is frequently given a great degree of importance. 
We have seen that a process consists of phases, and a process generally includes 
requirements, design, coding, and testing phases. Of the development cost, an 
example distribution of effort with the different phases is shown in Table 2.1. 

The exact numbers will differ with organization and the nature of the process. 
However, there are some observations we can make. First is that coding consumes 
only a small.percentage of the development effort. This is against the common 
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Requirements 10% 
Design 20% 
eoeling 20% 
Testing 50% 

TABLE 2.1. Effort distribution with phases. 

Writing programs 13% 
Reading programs and manuals 16% 
Job communication 32% 
Others (inc1uding personal) 39% 

TABLE 2.2. How programmers spend their 
time. 

naive notion that developing software is largely concerned with writing pro grams 
and that programming is the major activity. 

Another way of determining the effort spent in programming is to study how 
programmers spend their time in a software organization. A study conducted in 
Bell Labs to determine how programmers spend their time, as reported in [Fai85], 
found the distribution shown in Table 2.2. 

This data c1early shows that programming is not the major activity where program
mers spend their time. Even if we take away the time spent in "other" activities, 
the time spent by a programmer writing programs is still less than 25% of the 
remaining time. It also shows that job communication, which inc1udes meetings, 
writing memos, discussions, etc., consumes the most time of the programmers. 
In the study reported by Boehm [Boe81], it was found that prograrnmers spend 
less than 20% of their time programming. Both these studies show that writing 
programs does not consume much ofthe programmers' time.1t is 15 to 25% ofthe 
total time spent on projects. These data provide additional validation that coding 
is not the major activity in software development. 

The second important observation from the data about effort distribution with 
phases is that testing consumes the most resources during development. This is, 
again, contrary to the common practice, which considers testing a side activity 
that is often not properly planned. Underestimating the testing effort often causes 
the planners to allocate insufficient resources for testing, which, in turn, results in 
umeliable software or schedule slippage. 

Overall, we can say that the goal of the process should not be to reduce the effort of 
design and coding, but to reduce the cost of testing and maintenance. Both testing 
and maintenance depend heavily on the design and coding of software, and these 
costs can be considerably reduced if the software is designed and coded to make 
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testing and maintenance easier. Hence, during the early phases of the development 
process the prime issues should be "can it be easily tested" and "can it be easily 
modified." 

2.2.3 Early Defect Removal and Defect Prevention 

The notion that prograrnming is the central activity during software development 
is largely due to programming being considered a difficult task and sometimes an 
"art." Another consequence of this kind of thinking is the belief that errors largely 
occur during programming, as it is the hardest activity in software development and 
offers many opportunities for committing errors.1t is now dear that errors can occur 
at any stage during development. An example distribution of error occurrences by 
phase is: 

Requirements analysis 20% 
Design 30% 
Coding 50% 

As we can see, errors occur throughout the development process. However, the cost 
of correcting errors of different phases is not the same and depends on when the 
error is detected and corrected. The relative cost of correcting requirement errors 
as a function ofwhere they are detected is shown in Figure 2.4 [Boe81]. 

As one would expect, the greater the delay in detecting an error after it occurs, 
the more expensive it is to correct it. As the figure shows, an error that occurs 
during the requirements phase, if corrected during acceptance testing, can cost up 
to 100 times more than correcting the error during the requirements phase itself. 
The reason for this is fairly obvious. If there is an error in the requirements, then 
the design and the code will be effected by it. To correct the error after the coding is 
done would require both the design and the code to be changed, thereby increasing 
the cost of correction. 

The main moral of this section is that we should attempt to detect errors that occur 
in a phase during that phase itself and should not wait until testing to detect errors. 
This is not often practiced. In reality, sometimes testing is the sole point where 
errors are detected. Besides the cost factor, reliance on testing as the primary source 
for error detection, due to the limitations of testing, will also result in unreliable 
software. Error detection and correction should be a continuous process that is 
done throughout software development. In terms of the development phases, this 
means that we should try to verify the output of each phase before starting with 
the next. 

Detecting errors soon after they have been introduced is dearly an objective that 
should be supported by the process. However, even better is to provide support for 
defect prevention. It is generally agreed that all the defect removal methods that 
exist today are limited in their capability and cannot detect all the defects that are 
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Requirements Design Code Development Acceptance Operation 
Test Test 

Phase in Which Error Was Detected 

FIGURE 2.4. Cost of correcting errors[Boe81]. 

introduced. (Why else are there bugs in most software that are released and are 
then fixed in later versions?) Furthermore, the cost of defect removal is generally 
high, particularly if they are not detected for a long time. Clearly, then, to reduce 
the total number of residual defects that exist in a system at the time of delivery 
and to reduce the cost of defect removal, an obvious approach is to prevent defects 
from getting introduced. This requires that the process of performing the activities 
should be such that fewer defects are introduced. The method generally followed to 
support defect prevention is to use the development process to leam (from previous 
projects) so that the methods of performing activities can be improved. 

2.2.4 Process Improvement 

As mentioned earlier, a process is also not a static entity. Improving the quality and 
reducing the cost of products are fundamental goals of any engineering discipline. 
In the context of software, as the productivity (and hence the cost of a project) and 
quality are determined largely by the process, to satisfy the engineering objectives 
of quality improvement and cost reduction, the software process must be improved. 
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Having process improvement as a basic goal of the software process implies that 
the software process used is such that it supports its improvement. This requires 
that there be means for evaluating the existing process and understanding the weak
nesses in the process. Only when support for these activities is available can process 
improvement be undertaken. And, as in any evaluation, it is always preferable to 
have a quantifiable evaluation rather than a subjective evaluation. Hence, it is im
portant that the process provides data that can be used to evaluate the current 
process and its weaknesses. 

Having process improvement as a fundamental objective requires that the soft
ware process be a c1osed-Ioop process. That is, the process must leam from pre
vious experiences, and each project done using the existing process must feed 
information back into the process itself, which can then use this information for 
self-improvement. As stated earlier, this activity is largely done by the process 
management component of the software process. However, to support this activity, 
information from various other processes wiII have to flow to the process man
agement process. In other words, to support this activity, other processes will also 
have to take an active part. 

2.3 Software Development Process 

In the software development process we focus on the activities directly related to 
production of the software, for example, design, coding, and testing. A develop
ment process model specifies some activities that, according to the model, should 
be performed, and the order in which they should be performed. As stated ear
lier, for cost, quality, and project management reasons, development processes are 
generally phased. 

As the development process specifies the major development and quality assurance 
activities that need to be performed in the project, the development process really 
forms the core of the software process. The management process is decided based 
on the development process. Due to the importance of development process, various 
models have been proposed. In this section we wiII discuss some of the major 
models. As processes consist of a sequence of steps, let us first discuss what should 
be specified for a step. 

2.3.1 A Process Step Specification 

A production process is a sequence of steps. Each step performs a well-defined 
activity leading toward the satisfaction of the project goals, with the output of one 
step forming the input of the next one. Most process models specify the steps that 
need to be performed and the order in which they need to be performed. However, 
when implem,enting a process model, there are some practical issues like when to 



www.manaraa.com

2.3. Software Development Process 35 

initiate a step and when to terminate a step that need to be addressed. Here we 
discuss some of these issues. 

As we have seen, a process should aim to detect defects in the phase in which they 
are introduced. This requires that there be some verification and validation (V & V) 
at the end of each step. (In verification, consistency with the inputs of the phase 
is checked, while in validation the consistency with the needs of user is checked.) 
This implies that there is a clearly defined output of a phase, which can be verified 
by some means and can form input to the next phase (which may be performed 
by other people). In other words, it is not acceptable to say that the output of a 
phase is an idea or a thought in the mind of someone; the output must be a formal 
and tangible entity. Such outputs of a development process, which are not the final 
output, are frequently called the work products. In software, a work product can 
be the requirements document, design document, code, prototype, etc. 

This restriction that the output of each step be some work product that can be 
verified suggests that the process should have a small number of steps. Having too 
many steps results in too many work products or documents, each requiring V & V, 
and can be very expensive. Due to this, at the top level, a development process 
typically consists of a few steps, each satisfying a clear objective and producing a 
document used for V & V. How to perform the activity of the particular step or phase 
is generally not an issue of the development process. This is an issue addressed by 
methodologies for that activity. We will discuss various methodologies for different 
activities throughout the book. 

As a development process typically contains a sequence of steps, the next issue that 
comes is when a phase should be initiated and terminated. This is frequently done 
by specifying the entry criteria and exit criteria for a phase. The entry criteria of a 
phase specifies the conditions that the input to the phase should satisfy in order to 
initiate the activities of that phase. The output criteria specifies the conditions that 
the work product of this phase should satisfy in order to terminate the activities of 
the phase. The entry and exit criteria specify constraints of when to start and stop 
an activity. It should be clear that the entry criteria of a phase should be consistent 
with the exit criteria of the previous phase. 

The entry and exit criteria for a phase in a process depend largely on the imple
mentation of the process. For example, for the same process, one organization may 
have the entry criteria for the design phase as "requirements document signed by 
the client" and another may have "no more than X eITors detected per page in the 
requirement review." As each phase ends with some V & V activity, a common exit 
criteria for a phase is "V & V of the phase completed satisfactorily," where satisfac
torily is defined by the organization based on the objectives of the project and its 
experience in using the process. The specification of a step with its input, output, 
and entry and exit criteria is shown in Figure 2.5. 
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FIGURE 2.5. A step in a development process. 

Besides the entry and exit criteria for the input and output, a development step 
needs to produce some information for the management process. We know that the 
basic goal of the management process is to control the development process. For 
controlling a process, the management process needs to have precise knowledge 
about the development process activities. As the management process is executed 
by a logically separate group of people, the information about the development 
process must flow from the development process to the management process. This 
requires that a step produce some information for the management process. The 
nature of this information is specified by the management process, based on its 
needs. (Note the tight coupling of the management process with the development 
process.) This information (and other such information from previous steps) is used 
by the management process to exert control on the development process. The flow 
of information from a step and exercise of control is also shown in Figure 2.5. 

Generally, the information flow from a step is in the form of summary reports 
describing the amount of reSOllrces spent in the phase, schedule information, errors 
found in the V & V activities, etc. This type of information flow at defined points 
in the development process makes it possible for the project management (i.e., the 
people executing the management process) to get precise information about the 
development process, without being directly involved in the development process 
or without going through the details of all activities of a phase. 

It should be dear that the entry and exit criteria and the nature of information flow 
depends on how the process is implemented in an organization and on the project. 
Consequently, process models typically do not specify these. However, they must 
be specified by an organization, if it wishes to adopt a process model for software 
development. 

2.3.2 Waterfall Model 

We now discuss some of th( common process models that have been proposed. 
The simplest process model is the waterfall model, which states that the phases 
are organized in a linear order. There are various variations of the waterfall model 
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depending on the nature of activities and the ftow of control between them. In a 
typical model, a project begins with feasibility analysis. On successfully demon
strating the feasibility of a project, the requirements analysis and project planning 
begins. The design starts after the n:iquirements analysis is complete, and coding 
begins after the design is complete. Once the programming is completed, the code 
is integrated and testing is done. On successful completion of testing, the system 
is installed. After this, the regular operation and maintenance of the system takes 
place. The model is shown in Figure 2.6. 

In this book, we will only discuss the activities related to the development of soft
ware. Thus, we will only discuss phases from requirements analysis to testing. The 
requirements analysis phase is mentioned as "analysis and planning." Planning is a 
critical activity in software development. A good plan is based on the requirements 
of the system and should be done before later phases begin. However, in practice, 
detailed requirements are not necessary for planning. Consequently, planning usu
ally overlaps with the requirements analysis, and a plan is ready before the later 
phases begin. This plan is an additional input to all the later phases. 

With the waterfall model, the sequence of activities performed in a software devel
opment project is: requirement analysis, project planning, system design, detailed 
design, coding and unit testing, system integration and testing. This is the order 
the different phases will be discussed in this book, keeping the sequence as elose 
as possible to the sequence in which the activities are performed. 

Linear ordering of activities has some important consequences. First, to elearly 
identify the end of a phase and the beginning of the next, some certification mech
anism has to be employed at the end of each phase. This is usually done by some 
verification and validation means that will ensure that the output of a phase is 
consistent with its input (which is the output of the previous phase), and that the 
output of the phase is consistent with the overall requirements of the system. 

The consequence of the need for certification is that each phase must have some 
defined output that can be evaluated and certified. That is, when the activities of a 
phase are completed, there should be some product that is produced by that phase. 
And the goal of a phase is to produce this product. The outputs of the earlier 
phases are often called work products (or intermediate products) and are usually 
in the form of documents like the requirements document or design document. For 
the coding phase, the output is the code. From this point of view, the output of a 
software project is not just the final pro gram along with the user documentation, 
but also the requirements document, design document, project plan, test plan, and 
test results. 

Let us now consider the rationale behind the waterfall model. There are two basic 
assumptions for justifying the linear ordering of phases in the manner proposed by 
the waterfall Plodel [Boe81]: 
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FIGURE 2.6. The waterfall model. 

1. For a successful project resulting in a successful product, all phases listed in 
the waterfall model must be performed anyway. 

2. Any different ordering of the phases will result in a less successful software 
product., 
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A successful software product is one that satisfies all the objectives of the develop
ment project. These objectives include satisfying the requirements and performing 
the development within time and cost constraints. Generally, for any reasonable 
size project, all the phases listed inthe model must be performed explicitly and 
formally. Informally performing the phases will work only for very small projects. 

The second reason is the one that is now under debate. For many projects, the linear 
ordering of these phases is clearly the optimum way to organize these activities. 
However, some argue that for many projects this ordering of activities is unfeasible 
or suboptimum. We will discuss some of these ideas shortly. Still, the waterfall 
model is conceptually the simplest process model for software development that 
has been used most often. 

Project Outputs in Water/all Model 

As we have seen, the output of a project employing the waterfall model is not 
just the final program along and documentation to use it. There are a number 
of intermediate outputs that must be produced to produce a successful product. 
Though the set of documents that should be produced in a project is dependent on 
how the process is implemented, the following is a set of documents that generally 
forms the minimum set that should be produced in each project: 

• Requirements document 

• Project plan 

• System design document 

• Detailed design document 

• Test plan and test reports 

• Final code 

• Software manuals (e.g., user, installation, etc.) 

• Review reports 

Except for the last one, these are the outputs of the phases, and they have been briefty 
discussed. To certify an output product of a phase before the next phase begins, 
reviews are often held. Reviews are necessary, especially for the requirements 
and design phases, because other certification means are frequently not available. 
Reviews are formal meetings to uncover deficiencies in a product and will be 
discussed in more detaillater. The review reports are the outcome ofthese reviews. 

Limitations o/the Water/all Model 

The waterfall model, although widely used, has received some criticism. Here we 
list some of these criticisms: 

1. The waterfall model assurnes that the requirements of a system can be frozen 
(i.e. baselined) before the design begins. This is possible for systems designed 
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to automate an existing manual system. But for new systems, determining the 
requirements is difficult as the user does not even know the requirements. 
Hence, having unchanging requirements is unrealistic for such projects. 

2. Freezing the requirements usuaIiy requires choosing the hardware (because 
it forms apart ofthe requirements specification). A large project might take a 
few years to complete. If the hardware is selected early, then due to the speed 
at which hardware technology is changing, it is likely that the final software 
will use a hardware technology on the verge of becoming obsolete. This is 
clearly not desirable for such expensive software systems. 

3. The waterfaH model stipulates that the requirements be completely specified 
before the rest of the development can proceed. In some situations it might 
be desirable to first develop a part of the system completely and then later 
enhance the system in phases. This is often done for software products that are 
developed not necessarily for a client (where the dient plays an important role 
in requirements specification), but for general marketing, in which case the 
requirements are likely to be determined largely by the developers themselves. 

4. It is a document driven process that requires formal documents at the end of 
each phase. This approach tends to make the process documentation-heavy 
and is not suitable for many applications, particularly interactive applica
tions, where developing elaborate documentation of the user interfaces is 
not feasible. Also, if the development is done using fourth-generation lan
guages or modem development tools, developing elaborate specifications 
before implementation is sometimes unnecessary. 

Despite these limitations, the waterfaH model is the most widely used process 
model. It is weH suited for routine types of projects where the requirements are 
weH understood. That is, if the developing organization is quite familiar with the 
problem domain and the requirements for the software are quite clear, the waterfaH 
model works weH. 

2.3.3 Prototyping 

The goal of a prototyping-based development process is to counter the first two 
limitations of the waterfall model. The basic idea here is that instead of freezing 
the requirements before any design or coding can proceed, a throwaway prototype 
is buHt to help understand the requirements. This prototype is developed based 
on the currently known requirements. Development of the prototype obviously 
undergoes design, coding, and testing, but each of these phases is not done very 
formally or thoroughly. By using this prototype, the client can get an actual feel 
of the system, because the interactions with the prototype can enable the client 
to better understand the requirements of the desired system. This results in more 
stable requirerp.ents that change less frequently. 
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FIGURE 2.7. The prototyping model. 

Prototyping is an attractive idea for complicated and large systems for which there 
is no manual process or existing system to help determine the requirements. In 
such situations,letting the c1ient "play" with the prototype provides invaluable and 
intangible inputs that help determine the requirements for the system. It is also an 
effective method of demonstrating the feasibility of a certain approach. This might 
be needed for novel systems, where it is not c1ear that constrains can be met or that 
algorithms can be developed to implement the requirements. In both situations, the 
risks associated with the projects are being reduced through the use of prototyping. 
The process model of the prototyping approach is shown in Figure 2.7. 

A development process using throwaway prototyping typically proceeds as follows 
[GS81]. The development of the prototype typically starts when the preliminary 
version of the requirements specification document has been developed. At this 
stage, there is a reasonable understanding of the system and its needs and of which 
needs are unc1ear or likely to change. After the prototype has been developed, the 
end users and c1ients are given an opportunity to use the prototype and play with 
it. Based on their experience, they provide feedback to the developers regarding 
the prototype: what is correct, what needs to be modified, what is missing, what is 
not needed, etc. Based on the feedback, the prototype is modified to incorporate 
some of the suggested changes that can be done easily, and then the users and 
the c1ients are again allowed to use the system. This cyc1e repeats until, in the 
judgment of the prototypers and analysts, the benefit from further changing the 
system and obtaining feedback is outweighed by the cost and time involved in 
making the changes and obtaining the feedback. Based on the feedback, the initial 
requirements are modified to produce the final requirements specification, which 
is then used to develop the production quality system. 

For prototyping for the purposes of requirement analysis to be feasible, its cost 
must be kept low. Consequently, only those features are inc1uded in the prototype 
that will have a valuable return from the user experience. Exception handling, re
covery, and conformance to some standards and formats are typically not inc1uded 
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in prototypes. In prototyping, as the prototype is to be discarded, there is no point 
in implementing those parts of the requirements that are already weIl understood. 
Hence, the focus of the development is to include those features that are not prop
erly understood. And the development approach is "quick and dirty" with the focus 
on quick development rather than quality. Because the prototype is to be thrown 
away, only minimal documentation needs to be produced during prototyping. For 
example, design documents, a test plan, and a test case specification are not needed 
during the development ofthe prototype. Another important cost-cutting measure 
is to reduce testing. Because testing consumes a major part of development ex
penditure during regular software development, this has a considerable impact 
in reducing costs. By using these type of cost-cutting methods, it is possible to 
keep the cost of the prototype less than a few percent of the total development 
cost. 

Prototyping is often not used, as it is feared that development costs may become 
large. However, in some situations, the cost of software development without pro
totyping may be more than with prototyping. There are two major reasons for 
this. First, the experience of developing the prototype might reduce the cost of 
the later phases when the actual software development is done. Secondly, in many 
projects the requirements are constantly changing, particularly when development 
takes a lang time. We saw earIier that changes in requirements at a late stage 
during development substantially increase the cost of the project. By elongating 
the requirements analysis phase (prototype development does take time), the re
quirements are "frozen" at a later time, by which time they are likely to be more 
developed and, consequently, more stable. In addition, because the client and users 
get experience with the system, it is more likely that the requirements specified 
after the prototype will be closer to the actual requirements. This again will lead to 
fewer changes in the requirements at a later time. Hence, the costs incurred due to 
changes in the requirements may be substantially reduced by prototyping. Hence, 
the cost of the development after the prototype can be substantially less than the 
cost without prototyping; we have already seen how the cost of developing the 
prototype itself can be reduced. 

Prototyping is catching on.1t is weIl suited for projects where requirements are hard 
to determine and the confidence in obtained requirements is low. In such projects, 
a waterfall model will have to freeze the requirements in order for the development 
to continue, even when the requirements are not stable. This leads to requirement 
changes and associated rework while the development is going on. Requirements 
frozen after experience with the prototype are likely to be more stable. Overall, in 
projects where requirements are not properly understood in the beginning, using 
the prototyping process model can be the most effective method for developing the 
software. It is an excellent technique for reducing some types of risks associated 
with a project. We will further discuss prototyping when we discuss requirements 
specification and risk management. 
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2.3.4 Iterative Enhancement 

The iterative enhancement model [BT75] counters the third limitation of the wa
terfall model and tries to combine the benefits ofboth prototyping and the waterfall 
model. The basic idea is that the software should be developed in increments, each 
increment adding some functional capability to the system until the full system 
is implemented. At each step, extensions and design modifications can be made. 
An advantage of this approach is that it can result in better testing because testing 
each increment is likely to be easier than testing the entire system as in the water
fall model. Furthermore, as in prototyping, the increments provide feedback to the 
c1ient that is useful for determining the final requirements of the system. 

In the first step of this model, a simple initial implementation is done for a subset of 
the overall problem. This subset is one that contains some of the key aspects of the 
problem that are easy to understand and implement and which form a useful and 
usable system. A project controllist is created that contains, in order, all the tasks 
that must be performed to obtain the final implementation. This project controllist 
gives an idea of how far the project is at any given step from the final system. 

Each step consists of removing the next task from the list, designing the imple
mentation for the selected task, coding and testing the implementation, performing 
an analysis of the partial system obtained after this step, and updating the list as a 
result of the analysis. These three phases are called the design phase, implementa
tion phase, and analysis phase. The process is iterated until the project controllist 
is empty, at which time the final implementation of the system will be available. 
The iterative enhancement process model is shown in Figure 2.8. 

The project control list guides the iteration steps and keeps track of all tasks that 
must be done. Based on the analysis, one ofthe tasks in the list can inc1ude redesign 
of defective components or redesign of the entire system. However, redesign of the 
system will generally occur only in the initial steps. In the later steps, the design 
would have stabilized and there is less chance of redesign. Each entry in the list is 
a task that should be performed in one step of the iterative enhancement process 

Design 0 Design 1 Design n 

Implement 0 Implement 1 Implement n 

Analysis 0 Analysis 1 Analysis n 

FIGURE 2.8. The iterative enhancement model. 
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and should be simple enough to be completely understood. Selecting tasks in this 
manner will minimize the chances of error and reduce the redesign work. The 
design and implementation phases of each step can be performed in a top-down 
manner or by using some other technique. 

One effective use of this type of model is for product development, in which 
the developers themselves provide the specifications and therefore have a lot of 
control on what specifications go in the system and what stay out. In fact, most 
products undergo this type of development process. First, aversion is released that 
contains some capability. Based on the feedback from users and experience with 
this version, a list of additional desirable features and capabilities is generated. 
These features form the basis of enhancement of the software, and are included in 
the next version. In other words, the first version contains some core capability. 
And then more features are added to later versions. 

However, in a customized software development, where the client has to essentially 
provide and approve the specifications, it is not always clear how this process can be 
applied. Another practical problem with this type of development project comes 
in generating the business contract-how will the cost of additional features be 
determined and negotiated, particularly because the client organization is likely to 
be tied to the original vendor who developed the first version. Overall, in these 
types of projects, this process model can be useful if the "core" of the application 
to be developed is well understood and the "increments" can be easily defined and 
negotiated. In client-oriented projects, this process has the major advantage that 
the client's organization does not have to pay for the entire software together; it 
can get the main part of the software developed and perform cost-benefit analysis 
for it be fore enhancing the software with more capabilities. 

2.3.5 The Spiral Model 

This is arecent model that has been proposed by Boehm [Boe88]. As the name 
suggests, the activities in this model can be organized like aspiral that has many 
cycles. The radial dimension represents the cumulative cost incurred in accom
plishing the steps done so far, and the angular dimension represents the progress 
made in completing each cycle of the spiral. The model is shown in Figure 2.9 
[Boe88]. 

Each cycle in the spiral begins with the identification of objectives for that cycle, 
the different alternatives that are possible for achieving the objectives, and the 
constraints that exist. This is the first quadrant of the cycle (upper-left quadrant). 
The next step in the cycle is to evaluate these different alternatives based on the 
objectives and constraints. The focus of evaluation in this step is based on the risk 
perception for the project. Risks reflect the chances that some of the objectives 
of the project may not be met. Risk management will be discussed in more detail 
later in the boqk. The next step is to develop strategies that resolve the uncertainties 
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FIGURE 2.9. The spiral model [Boe88]. 

and risks. This step may involve activities such as benchmarking, simulation, and 
prototyping. Next, the software is developed, keeping in mind the risks. Finally the 
next stage is planned. 

The development step depends on the remaining risks_ For example, if perfor
mance or user-interface risks are considered more important than the program 
development risks, the next step may be an evolutionary development that involves 
developing a more detailed prototype for resolving the risks. On the other hand, 
if the pro gram development risks dominate and the previous prototypes have re
solved all the user-interface and performance risks, the next step will follow the 
basic waterfall approach. 

The risk-driven nature of the spiral model allows it to accommodate any mixture 
of a specification-oriented, prototype-oriented, simulation-oriented, or some other 
type of approach. An important feature of the model is that each cycle of the spiral 
is completed py a review that covers all the products developed during that cycle, 
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including plans for the next cycle. The spiral model works for development as weIl 
as enhancement projects. 

In a typical application of the spiral model, one might start with an extra round 
zero, in which the feasibility ofthe basic project objectives is studied. These project 
objectives may or may not lead to a developmentJenhancement project. Such high
level objectives include increasing the efficiency of code generation of a compiler, 
producing a new full-screen text editor and developing an environment for improv
ing productivity. The alternatives considered in this round are also typically very 
high-level, such as whether the organization should go for in-house development, 
or contract it out, or buy an existing product. In round one, a concept of operation 
might be developed. The objectives are stated more precisely and quantitatively 
and the cost and other constraints are defined precisely. The risks here are typi
cally whether or not the goals can be met within the constraints. The plan for the 
next phase will be developed, which will involve defining separate activities for 
the project. In round two the top-level requirements are developed. In succeeding 
munds the actual development may be done. 

This is a relatively new model; it can encompass different development strategies. In 
addition to the development activities, it incorporates some ofthe management and 
planning activities into the model. For high-risk projects this might be a preferred 
model. 

2.4 Project Management Process 

Proper management is an integral part of software development. A large software 
development project involves many people working for a long period of time. We 
have seen that a development process typically partitions the problem of developing 
software into a set of phases. To meet the cost, quality, and schedule objectives, 
resources have to be properly allocated to each activity for the project, and progress 
of different activities has to be monitored and corrective actions taken, if needed. 
All these activities are part of the project management process. 

The project management process component of the software process specifies all 
activities that need to be done by the project management to ensure that cost and 
quality objectives are met. Its basic task is to ensure that, once a development 
process is chosen, it is implemented optimally. The focus of the management 
process is on issues like planning a project, estimating resource and schedule, and 
monitoring and controlling the project. In other words, the basic task is to plan the 
detailed implementation of the process for the particular project and then ensure 
that the plan is followed. For a large project, a proper management process is 
essential for success. 
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2.4.1 Phases of Management Process 

The activities in the management process for a project can be grouped broadly into 
three phases: planning, monitoring and control, and termination analysis. Project 
management begins with planning, which is perhaps the single largest responsi
bility of the project management. The goal of this phase is to develop a plan for 
software development following which the objectives of the project can be met 
successfully and efficiently. Proper planning is recognized as a critical ingredi
ent for a successful project. The project plan provides the fundamental basis for 
project management. A software plan is usually produced before the development 
activity begins and is updated as development proceeds and data about progress 
of the project becomes available. During planning, the major activities are cost 
estimation, schedule and milestone determination, project staffing, quality control 
plans, and controlling and monitoring plans. 

In cost and schedule estimation, the total cost and time needed for successfully 
completing the project are estimated. In addition, cost and schedule for the dif
ferent activities of the development process to be used are also estimated, as the 
development process only specifies the activities, not the cost and time require
ment for them. In addition to estimating the effort and schedule for various activities 
and components in the project, the project plan plans for all the software quality 
assurance activities that need to be performed in order to ensure that quality objec
tives are met. A plan also provides methods for handling change and methods for 
monitoring a project. Project planning is undoubtedly the single most important 
management activity, and output of this forms the basis of monitoring and control. 
We will devote one full chapter Iater in the book to project planning. 

Project monitoring and control phase of the management process is the longest in 
terms of duration; it encompasses most of the development process. It inc1udes all 
activities the project management has to perform while the development is going on 
to ensure that project objectives are met and the development proceeds according to 
the developed plan (and update the plan, if needed). As cost, schedule, and quality 
are the major driving forces, most of the activity of this phase revolves around 
monitoring factors that affect these. Monitoring potential risks for the project, 
which might prevent the project from meeting its objectives, is another important 
activity during this phase. And if the information obtained by monitoring suggests 
that objectives may not be met, necessary actions are taken in this phase by exerting 
suitable control on the development activities. 

Monitoring a development process requires proper information about the project. 
Such information is typically obtained by the management process from the de
velopment process. As shown earlier in Figure 2.5, the implementation of a devel
opment process model should be such that each step in the development process 
produces information that the management process needs for that step. That is, 
the development process provides the information the management process needs. 
However, interpretation of the information is part of monitoring and control. 
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For example, suppose that after the design is done, the development process pro
vides the information that the design took three times the effort that was projected 
in the plan. The experience about the general distribution of effort (as shown in 
Table 2.1) suggests that the total cost of the project is likely to be much larger than 
was estimated earlier. When this situation is observed during project monitoring as 
part of project control, corrective action has to be exerted on the project, as without 
it the chances of meeting the cost, schedule, and quality objectives are low. The 
corrective actions could be to reduce the scope of the project, renegotiate the cost 
and schedule, add more manpower, use better tools, etc. 

Whereas monitoring and controllasts the entire duration of the project, the last 
phase of the management process-termination analysis-is performed when the 
development process is over. The basic reason for performing termination analysis 
is to provide information about the development process. Remember that a project 
is an instantiation of the process. To understand the properties of the process, data 
from many projects that used the process will be needed. Using the predictability 
property of the process, this data about the process can be used to make predictions 
and estimations about future projects. The data about the project is also needed to 
analyze the process. For these reasons, the termination analysis phase is needed. 
We will discuss the use of project data for predicting and process improvement 
later in the chapter. 

The temporal relationship between the management process and the development 
process is shown in Figure 2.10. This is an idealized relationship showing that 
planning is done before development begins, and termination analysis is done after 
development is over. As the figure shows, during the development, from the various 
phases of the development process, quantitative information flows to the monitoring 
and control phase of the management process, which uses the information to exert 
control on the development process. 
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FIGURE 2.10. Temporal relationship between development and management process. 
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2.4.2 Metries, Measurement, and Models 

For effective project monitoring, the information coming from the development 
process to the management process should be objective and quantitative data about 
the project. If the information obtained is not quantitative, then subjective judg
ments will have to be used, which an engineering discipline needs to minimize. 
The need for quantitative data from the process requires that software metrics be 
used. 

Software metrics are quantifiable measures that could be used to measure different 
characteristics of a software system or the software development process. All engi
neering disciplines have metrics (such as metrics for weight, density, wavelength, 
and temperature) to quantify various characteristics of their products. Software 
metrics is an emerging area. Because the software has no physical attributes, con
ventional metrics are not much help in designing metrics for software. A number 
of metrics have been proposed to quantify things like the size, complexity, and 
reliability of a software product. 

Intricately tied to metrics is measurement. Metrics provide the scale fer quantify
ing qualities; actual measurement must be performed on a given software system 
in order to use metrics for quantifying characteristics of the given software. An 
analogy in the physical world is that centimeters is the metric of length, but to 
determine the length of a given rod, one must measure it using some means like a 
measuring tape. The measurement method must be objective and should produce 
the same result independent of the measurer. 

Values for some metrics can be directly measured; others might have to be deduced 
by other measurement (an analogy could be that the distance between two points 
can be deduced by measuring the speed of a vehicle and measuring the time it 
takes to traverse the given distance). If a metric is not measured directly, we call 
the metric indirect. Some factors, like many software quality parameters, cannot 
be measured directly either because there are no means to measure the metric 
directly, or because the final product whose metric is of interest still does not exist. 
For example, it is desirable to predict the quality of software during the early 
phases of development, such as after design. Because the software does not yet 
exist, the metric willhave to be predicted from the factors that can be measured 
after design. Similarly, the reliability of a software cannot, in general, be measured 
directly, even though precise definition and metrics for reliability exist. It has to be 
estimated from other measurements that are possible. 

For estimating, models are needed. A model is a relationship of the predicted 
variable (the property of interest) that other variables that can be measured. That 
is, if there is some metric of interest which cannot be measured directly, then we 
build models to estimate the metric value based on the value of some other metrics 
that we can measure. The model may be determined based on empirical data or it 
may be analytic [CDS86]. As these models capture the relationships whose exact 
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nature depends on the process, building a model is an issue that concems process 
management; we will discuss it later in this chapter. 

It should be clear that metrics, measurement, and models go together. Metrics 
provide a quantification of some property, measurements provide the actual value 
for the metrics, and models are needed to get the value for the metrics that cannot be 
measured directly (i.e., provide the measurement indirectly by using a model). Let 
us now try to understand how metrics are used in the project management process. 

All metrics must have a purpose; otherwise why should we collect them? Generally, 
the purpose in some way will be related to achieving the basic objective oflow cost 
and high quality. Any metric that does not help directly or indirectly in improving 
the product quality or reducing its cost is of academic interest only. For example, 
let's take a metric that gives for code (or some other document) the total frequency 
of occurrence of different alphabets. This is a bona-fide metric that quantifies 
something precisely, and it can be measured easily. It may be of some use to 
linguists or people involved in encryption, but it is of no practical use as far as 
software engineering is concemed. 

Let us consider a more commonly used metric. Many metrics have been proposed 
for measuring the "complexity" of code, or design-it seems that knowing the 
complexity of the code is interesting. However, "interestingness" is not of much 
use to us-we are interested in cost, schedule, and quality. Hence, unless we can 
relate complexity to these parameters, a complexity metric is oflittle use (regardless 
ofthe claim ofhow "accurately" it measures complexity). Fortunately, in this case, 
complexity is related to some quality parameters, as a complex program is generally 
harder to modify (hence has low modifiability) and is difficult to code and debug 
(and thus requires more effort). 

However, this is not the complete picture. If we are interested in measuring com
plexity, say, for the purpose of improving the maintainability or the error-detection 
process, we must first establish a clear relationship between the chosen metric and 
the property of interest, because most of the quality properties cannot be directly 
measured and hence have to be estimated from other measurements. Unless this 
relationship is established, any metric is as good as any other (in fact, the fre
quency metric mentioned earlier can also be claimed to be a complexity metric). 
Hence, it is very important that relationships of ametrie are established with so me 
quality or cost parameter. For example, in the case of complexity, if we choose 
the cyclomatic complexity (described later in the book), some correlation of the 
metric values and maintainability or number of errors must first be established. If 
it is shown that there is a strong correlation between the cyclomatic complexity 
of a module and the number of errors made in that module, then the metric can 
be used to estimate the "error proneness" of a module: a high-complexity module 
can be "highlighted" as error prone, and then measures can be taken to improve 
the quality of,that module. In other words, once the relationship with a parameter 
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of interest is established. the metric value for a project can be used to improve the 
parameter with which the correlation is established. 

Establishing a relationship with the property of interest with some metrics that we 
can measure is essentially building models. Tbe exact nature of the model depends 
on the process and is discussed later in the chapter. Once the models are known 
for the process being used. the value of some measurable metrics can be used to 
estimate other values of interest that have a direct bearing on cost and quality. 
These can then be used by project management-at the very least they provide 
objective means for project monitoring. In fact. all quantitative data flowing from 
the development process to the management process is essentially some metric 
values. Therefore. one can say that metrics (and measurement and models for 
estimation) are essential for objective and data-based project management. Without 
metrics. project management activities will have to depend on subjective evaluation 
and information. which as we have said. goes against the fundamental goal of 
engineering. 

It is important to understand this role of software metrics. Many metrics have 
been proposed in literature. and most of them have been proposed without any 
studies about their correlation with anything. However. now relationships of many 
metrics have been established with some parameters that affect cost or quality of 
the project. In this book. for each major development activity. we will define some 
metrics that can be used for that activity. but we will focus primarilyon the metrics 
for which some relationships have been established. It should be pointed out that 
a relationship between a metric and some parameter may be "local." i.e .• it holds 
for some type of processes and some environments (which influence the actual 
process implementation) and not for other types of processes. That iso the exact 
nature of the relationship may not be "global" and is more likely to depend on local 
conditions. 

2.5 Software Configuration Management Process 

Throughout development. software consists of a collection of items (such as pro
grams. data. and documents) that can easily be changed. During software develop
ment. the design. code. and even requirements are often changed. and the changes 
occur at any time during the development. This easily changeable nature of software 
and the fact that changes often take place require that changes be done in a controlled 
manner. Software configuration management (SeM) [BHS79, Ber84. lEE87] is the 
discipline for systematically controlling the changes that take place during devel
opment. The lEEE defines SCM as "SCM is the process of identifying and defining 
the items in the system. controlling the change of these items throughout their life 
cycle. recordipg and reporting the status of items and change requests. and verifying 
the completeness and correctness of items" [lEE87]. 
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Software configuration management is a process independent of the development 
process largely because most development models cannot accommodate changes 
at any time during development. Development processes handle "normal" changes, 
such as changes in code while the programmer is developing it, changes in require
ments during the requirements phase, etc. However, most cannot properly handle 
changes like requirements changes while coding is being done, code changes dur
ing system acceptance testing, etc. As such changes are a fact oflife (requirements 
do change after the requirements phase is over and the requirements have been "fi
nalized," and bugs are found in a module even after it has been coded and "handed 
over"), they are handled by the software configuration management activities. The 
changes themselves are still performed by the development team, but approving 
the change, evaluating the impact of the change, decide what needs to be done to 
accommodate a change request, etc. are issues that are handled by SCM. In a way, 
the development process is brought under the configuration control process, so that 
changes are allowed in a controlIed manner, as shown in Figure 2.11 for a waterfall
type development process model [Whi91]. Note that SCM directIy controls only 
the products of a process (most products of phases are called baselines, as discussed 
later) and only indirectly influences the activities producing the product. 

Tbe basic reason for having SCM, as with any other activities for a project, is that it 
has beneficial effects on cost, schedule, and quality ofthe product being developed. 
As we saw earlier, cost, schedule, and quality are the fundamental concems that 
drive a software project. Changes, and rework required for the changes, can have 
an enormous adverse effect on the cost and quality of the product being developed. 
eWe saw earlier that changes and rework can consume up to 50% of the development 
effort. If left uncontrolled, this can go much higher.) Tbe fundamental reason for 
having the SCM process is to control the changes so that they have minimal effect 
on cost, schedule, and quality. 

Though configuration management is more general than change management, man
aging changes is its primary task, and it is this aspect of it that we will focus on 
here. Much of the material here is based on [Whi91 , BHS80]. We will only briefly 
discuss the issues of system building, version management, etc., which sometimes 
also come under SCM; the user is referred to [Whi91] for discussion of these topics. 
With this, SCM can be considered as having three major components: 

Configuration Management 

FIGURE 2.11. Configuration management and development process. 
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• Software configuration identification 

• Change control 

• Status accounting and auditing 

These three components of SCM are directly derived from the IEEE definition of 
SCM. In the rest of this section, we will discuss these three components. 

2.5.1 Configuration Identification 

The first requirement for any change management is to have a clearly agreed-on 
basis for change. That is, when a change is done, it should be clear to what the 
change has been applied. This requires baselines to be established. A baseline, 
once established, forms the basis of change [BHS80]. A baseline change is the 
changing of the established baseline, which is controlled by SCM. 

A baseline also forms a reference point in the development of a system and is 
generally formally defined after the major phases in development. At the time 
it is established, a software baseline represents the software in the most recent 
state. After baseline changes (made through SCM), the state of the software is 
defined by the most recent baseline and the changes that were made. Some of the 
common baselines are functional or requirements baseline, design baseline, and 
product or system baseline. Functional or requirements baseline is generally the 
requirements document that specifies the functional requirements for the software. 
Design baseline consists of the different components in the software and their 
designs. Product or system baseline represents the developed system. It should be 
clear that a baseline is established only after the product is relatively stable. For 
example, there is no point establishing the first rough draft of the SRS (which has 
not yet been reviewed) as the baseline, as it is still a "working" document. Only 
when the requirements are "frozen," is the baseline established. We will discuss 
this issue more later. Though other project-specific baselines can be established 
(for example, documents like plans and test case specifications can be baselined), 
we will assume that only these baselines exist. 

Though the goal of SCM is to control the establishment and changes to these 
baselines, treating each baseline as a single unit for the purposes of change is 
undesirable, as the change may be lirnited to a very small portion of the baseline. 
For example, suppose only one module in a large system is changed. If we do 
not consider the product baseline for the system as consisting of many modules 
(or module hierarchies), then this change will be viewed as changing the product 
baseline, and a finer, module-level control cannot be established on this change. 

For this reason, a baseline can consist of many software configuration items (SCIs), 
or items. An SCI is a document or an artifact that is explicitly placed under config
uration contral and that can be regarded as a basic unit for modification. A baseline 
essentially is an arrangement of a set of SCIs [BHS80]. That is, a baseline is a set 
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of SCIs and the relationship between them. For example, a requirements baseline 
may consist of many requirement SCIs (Le., each requirement is an SCI) and how 
these SCIs are related in the requirements baseline (e.g. in which order they ap
pear). With a baseline consisting of many SCIs, a new issue arises for SCM: how 
to "build" a baseline from the SCIs. Tbe basic problem of system building is how 
to get a consistent system from the SCIs, particularly when the SCIs might be get
ting changed and multiple versions of an SCI may exist (see the discussion later). 
In other words, the system building procedure has to be such that it rebuilds the 
system if an SCI changes to make sure that the changes are reflected in the system 
and selects the proper version of SCIs. The first part of this problem is sometimes 
handled by tools like the Makefile [Fe179]. Makefile requires adefinition of the 
system in terms of its components, dependencies between components, and how 
the system is to be constructed from the components. When a system build is done 
using the Makefile, it rebuilds the system if any of the components it depends on 
has changed since the last time the system was built. More advanced tools are 
needed to solve the issue of incorporating versions in a flexible manner. We will 
not discuss this aspect of SCM further; the reader is referred to [Whi91] for more 
information. 

Because the baseline consists of the SCIs and SCI is the basic unit for change 
contro!, the SCM process starts with identification of configuration items. There 
are no hard and fast rules for SCI selection, except that SCI should be a part of 
some baseline, and once identified, it is given an identifiable name and becomes 
the unit of change control. Frequently, the requirements or functional baseline has 
just one SCI-the requirements document. However, if desired, different chapters, 
sections, or even paragraphs can be treated as SCIs (provided they are labeled 
properly for referencing). SimiIarly, the design baseline frequently consists of a 
single SCI-the design document. Again, if needed, different portions of the design 
can be designated SCIs. 

At the code level, that is, for the product baseline, generally multiple SCIs ex
ist. Other approaches are also possible. Multiple SCIs are used at the code level, 
because usually the change volume is the largest at the code level (almost any 
change requires some changes in the code). Furthermore, frequently a large num
ber of developers are involved during the co ding activity, with different developers 
responsible for different parts. By having a finer granularity for SCI, assigning 
responsibility for change becomes easier, making it easier to control and track 
changes. For defining SCIs, one practice is to have each separately compiIable 
module as an SCI, with the name of the module being the name of the SCI. An
other approach is to have each file (consisting of some modules or definitions) 
treated as an SCI, with the name of the file being the name of the SCI. 

It should be dear that the SCIs being managed by SCM are not independent of 
one another and there are dependencies between various SCIs. An SCI X is said 
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to depend on another SCI Y, if a change to Y might require a change to be made 
to X for X to remain correct or for the baselines to remain consistent [Whi91]. 

A change request, though, might require changes be made to some SCIs; the de
pendency of other SCIs on the ones being changed might require that other SCIs 
also need to be changed. Clearly, the dependency between the SCIs needs to be 
properly understood when changes are being made. However, though it is pos
sible to specify the dependencies, they are frequently not explicitly documented 
but are derived from the nature of the SCIs. For example, the SCI representing 
the design document depends on the SCI representing the requirements document. 
Frequently, in design documents, each design item specifies which requirements 
it implements. If a design baseline is considered as composed of many SCIs, this 
information can be used to understand the dependencies between different items 
in requirements and in design. In code, an SCI representing a module might de
pend on another module SCI, depending on the relationship between them. This 
dependency can generally be obtained from the design specifications. While doing 
change control, these dependencies are used to decide what needs to be changed 
for a change request. 

2.5.2 Change Control 

Once the SCIs are identified and their dependencies understood, the change control 
procedures of SCM can be applied. Most of the decisions regarding the change are 
generally taken by the configuration control board (CCB) , which is a group of 
people responsible for configuration management, headed by the configuration 
manager (CM). For smaller projects, the CCB might consist of just one (full-time 
or part-time) person (the CM). Typically, for a project, the constitution of the 
CCB and the procedures it will follow are specified in the software configuration 
management plans. We will generally use CM to refer to the CCB. 

Let us come back to the issue of what exact1y is under the control of SCM. Typically, 
while an SCI is under development and is not visible to other SCIs, it is considered 
being in the workingstate. An SCI in the working state is not under SCM and can 
be changed freely. Once the developer is satisfied that the SCI is stable enough for 
it to be used by others, the SCI is given to the CM for review, and the item enters 
the state "under review." Once an item is in this state, it is considered as "frozen," 
and any changes made to a private copy that the developer may have made are not 
recognized. The CM reviews the SCI (or gets it reviewed), and if it is approved, 
enters it into a library, after which the item is formally under SCM. The basic 
purpose ofthis review is to make sure that the item is of satisfactory quality and is 
needed by others, though the exact nature of review will depend on the nature of the 
SCI and the actual practice of SCM. For example, the review might entail checking 
if the item meets its specifications or if it has been properly unit tested. If the item 
is not approved, the developer may be given the item back and the SCI enters the 



www.manaraa.com

56 2. Software Processes --------------------------------------------------

Rejeeted 

FIGURE 2.12. SeM life eycle of an item 

working state again. This "life cyc1e" of an item from the SCM perspective, which 
is an enhancement from the one described in [Whi91], is shown in Figure 2.12. 

Once an SCI is in the library, it cannot be modified, even by the author/developer, 
without the permission of the CM. An SCI under SCM can be changed only if the 
change has been approved by the CM. In such a case, the SCI is checked out of 
the library, the change made to the SCI, and then the modified SCI is given back 
to the CM, who reviews it again to ensure that the change is properly done and 
then checks the item back in the library. This aspect of SCM is sometimes called 
library management and can be done with the aid of tools. Frequently, the changed 
SCI does not replace the old copy; instead a new version of the SCI is created 
because the old version might be used in some working system (frequently the 
older version of the system to which the SCI belongs), and if the new version is not 
fully compatible with the old version, we would not like to disturb the working of 
the systems that use the old version. In other words, after implementing an approved 
change to an SCI, both the old and new versions of the SCI may exist in the library. 
The old version may be used in some older versions of the system, and the new one 
may be used in some Iater versions of the system. Clearly, with multiple versions 
of SCIs and multiple versions of systems using different versions of SCIs, version 
management becomes extremely important. Even if only one version of each SCI 
is maintained, it is desirable to know the change history and the version number 
of the SCI. This is frequently done by keeping a change log with the SCI and 
appropriately numbering the versions. We do not discuss the version management 
aspect of SCM further in this book; the reader is referred to [Whi91] for further 
information. 

A change is initiated by a change request (eR). The reason for change can be 
anything. However, the most common reasons are requirement changes, changes 
due to bugs, platform changes, and enhancement changes. The CR for a change 
generally consists of three parts. The first part describes the change, reason for 
change, the SCIs that are affected, the priority of the change, etc. The second part, 
filled by the CM, describes the decision taken by the CCB on this CR (approved, 
not approved), the actions the CM feels need to be done to implement this change 
(no action, change of doeumentation, change of software, ete.), and any other 
eomments the CM may have. The third part is filled by the implementor who 
later implements the change. The implementor mayaIso maintain a change log 
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to facilitate the undoing of the change, if needed. The CR is assigned a unique 
number by the CCB, which is used to refer to it. A CR will contain the following 
information: 

CRID 
About the change request 

Items to be changed 
Description of change 
Reasons for change 
Priority of change 
Originator 

CCB comments 
CR approved/rejected 
Actions needed 
Comments 

Implementation information 
Status of change implementation 
Comments 

The CM evaluates the CR primarily by considering the effect of change on cost, 
schedule, and quality of the project and the benefits likely to come due to this 
change. The cost-benefit analysis may require interaction with the change origina
tor and may require some negotiations. Once the CR is accepted and the actions 
that need to be taken to maintain consistency of the software are identified by 
the CM, the project manager will generally take over and plan and schedule the 
change implementation. The cost and schedule for implementing the CR is also 
sometimes recorded in the CR itself. The CR is then generally implemented by 
the person responsible for the SCI, generally the programmer if the SCI is a code 
module. Any comments regarding the change implementation are also recorded in 
the CR. Hence, a CR form not only contains the change request, but a summary of 
all the activities related to the change. By looking at the CR form, the status of a 
change request can be determined. 

One of the most common reasons for a CR is the discovery of some bug or problem 
in the software. Frequently, the change requests originating due to faults are made 
on a different fohn called afault report (FR). FRs are generally treated as high
priority CRs, especially if the fault being reported is serious. An FR is also assigned 
a unique ID by the CM. Besides requesting the change, FRs are used to track the 
status of known bugs in the system. An FR form will generally contain: 

FRID 
Fault information 

Description of the fault 
Severity of the fault 
Item suspected of being faulty 
Effect of the fault 
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Circumstances and environment data that caused the fault to 
manifest itself 

Possible fixes 
Originator 

CCB comments 
Approved/rejected 
Priority 
Comments 

Fault fixing information 
Items changed 
Comments 

Some changes might effect the baselines, while others might not have any effect 
. on the baselines. If a CR affects the baseline, then the baseline has to be updated. 
This is generally done by the CM, who controls the baselines. Frequently, changes 
to baselines are appended to the baselines, particularly if the baseline is a paper 
document like the requirements document. If too many baseline changes are made, 
then the baseline may be revised to create an updated baseline incorporating all 
the changes. 

2.5.3 Status Accounting and Auditing 

Incorporating changes, after they have been approved, takes time. So the changes 
to items occur over aperiod of time. Some mechanisms are needed to record the 
current status of a CR/FR, which can be used by a manager to determine the status 
of all the change requests. Though the role of status accounting is more general, 
we will limit our discussion to status of CRs/FRs. Tbe aim of status accounting is 
to answer questions like what is the status of a CR (approved or not), what is the 
status of an approved CR, what is the frequency of CRs, what is the average time 
and effort for fixing a CR, and what is the number of CRs per SCI. 

For status accounting, the main source of information is the CRs and FRs them
selves. Generally, a field in the CR/FR is added that specifies its current status. 
Tbe status could be active (i.e., change is being performed), completed, or not 
scheduled. Information about dates and efforts can also be added to the CR. The 
information from the CRs/FRs can be used to prepare a summary (e.g., all the CRs 
that are still pending, all the FRs that are still "not closed"), which can be used by 
the project manager and the CCB to track all the changes. 

Auditing has a different role. In general, an audit for a process is performed by 
auditors (who are different from the people implementing the process). The main 
objective of an audit is to determine if the specified process is being followed 
and whether the specified process satisfies the goals of the process. The same 
is done for SCM auditing. Records of past changes are evaluated by the auditor 
to determine if the SCM procedures are being followed, and the procedures are 
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evaluated to ensure that the SeM goals are met. One impact of auditing is that 
while performing SeM, enough information has to be recorded such that an SeM 
audit can be performed. Generally, a periodic auditing is performed. The period of 
the audit may be small in the start but may increase as the processes become weIl 
established and institutionalized. 

2.6 Process Management Process 

A software process is not a static entity-it has to change to improve so that 
the products produced using the process are of higher quality and are less costly. 
Reducing cost and improving quality are fundamental goals of engineering. For 
producing software it implies that the software process must continually be im
proved, as cost and quality of products are determined to a great extent by the 
process. As stated earlier, this is the objective of the process management process. 
It should be emphasized that process management is quite different from project 
management. In process management the focus is on improving the process that 
improves the general quality and productivity for the products produced using the 
process. In project management the focus is on executing the current project and 
ensuring that the objectives of the project are met. The time duration of interest for 
project management is typically the duration of the project, while process man
agement works on a much larger time scale as each project is viewed as providing 
a data point for the process. 

Process management is an advanced topic beyond the scope of this book. Interested 
readers are referred to the book by Humphrey [Hum89]. We will only briefty 
discuss some aspects here. However, one aspect of process management is to build 
models for the process by which the nature of the relationship between some metric 
values for the process can be captured. As these models directly affect project 
management, we will discuss this issue in some detail. 

2.6.1 Building E~timation Models 

It is not always easy to define metrics to quantify many quality attributes (e.g. 
usability), and for many others where metrics can be defined it is not easy to 
measure the value (e.g. reliability). In such cases, it is important to build models 
that can be used to estimate or predict the (quality) parameter of interest by using 
the metric values that can be measured and the model. These models can then be 
used for project management in predicting various parameters of interest for the 
projecl. 

Such models are generally process-specific as the property of interest depends 
on the proces~. That is, if the process changes, the value of the property will 
change even if the input values (i.e., the metrics that have been measured) are 
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the same. For example, suppose there is a strong correlation between the value of 
some complexity metric and total testing effort. The actual correlation will clearly 
depend on the process. A process using good tools and methods will consume less 
effort than an ad-hoc process not using any tools, even for the same complexity. 

Though the models capture properties of the process, they are used heavily in 
project management. As discussed earlier, project management uses the models 
to predict some values of interest, and these predicted values can then be used 
for project monitoring. For example, there is a strong dependence of the total 
effort required for a project on the project size. However, the aetual nature of the 
dependence depends on the process-a very efficient process with high productivity 
will eonsume a lot less effort for the same project eompared to an inefficient proeess. 
Onee the model for a partieular process is built, it ean be used for effort estimation 
by projects using this process. In fact, this is how cost and schedule estimation is 
done for proeesses. 

Henee, we ean say that models eapture some aspeets of the proeess that are quite 
often important for projeet management. Hence, for effeetive projeet management, 
it is important that appropriate models be built for the proeess. 

A model for the software proeess (or a part of it) ean be represented as [CDS86] 

Y = !(Xl, X2,"" xn ). 

The dependent variable y is the metric of interest (e.g., total effort, reliability, etc.). 
Xl, X2, ... ,Xli are independent variables that typically represent some metric val
ues that ean be measured when this model is to be applied. The function ! is really 
the model itself that specifies how Y depends on these independent variables for 
the process. A model may be theoretical or data-driven. In a theoretical model, the 
relationship between the dependent and independent variables is determined by 
some existing relationships that are known. Such models are independent of data. 
Data-driven models are generally the result of statistical analysis of the data eol
leeted about the process from previous projects. In these models, one hypothesizes 
some model, whose actual parameters are then determined through the analysis 
of data. Many of the process models used in project management are data-driven. 
CoUecting data for building such models is the major reason for the termination 
analysis phase of the management process. 

Let us briefty discuss how data-driven models are constructed. It is clear that for 
data-driven models, data from past projects is needed to obtain the model. The 
larger the data set, the more accurate the model. The goal of building a model is 
to determine the relationship between ametrie of interest and some other metric 
values. The simplest such model is one with only one independent variable, that 
is, to determine the relationship between two variables, say, Y (variable of interest) 
and X (variable whose value could be measured). 

The first question is whether there is any relationship between them. Suppose for 
the last n projeets we have the values of Y andx and ourdata setis (XI, YI), (X2, Y2), 



www.manaraa.com

2.6. Process Management Process 61 

30,000,-----------------, • 
• • 

• • 
• 

• • 
• 

N • • • • • 
• • 

• • • 
• • 

o~--~--~----+_--_+----~--~ 
o 800 

VARS 

FIGURE 2.13. N versus VARS . 

... , (xn, Yn). This can be done graphically by drawing a scatter plot [CDS86], in 
which points for all the x - Y pairs are drawn. If the graph, containing n points, 
shows some pattern, one can say that there is some relationship between them. For 
example, the scatter plot of the totallength of Pascal programs (N) and the number 
of different variables (VARS) is shown in Figure 2.13 (adapted from [CDS86]). 
The scatter plot clearly shows that there is a relationship between N and VARS.1t 
also suggests that the relationship is probably linear, though the relationship is not 
perfect. 

Existence of relationship between the two variables can also be determined by 
determining the correlation between them. Correlation, in the statistical sense, im
plies that an interval change in one variable is accompanied by an interval change 
in the other variable. The strength of the correlation is captured by the correla
tion coefficient. If we assume that the relationship is linear then the correlation 
coefficient r can be determined by the following equation [CDS86]: 

r = _1_ L (x - i) (y - y) 

n - 1 Sx Sy 

where i and y represent the means of the values of x and y, and Sx and Sy are 
the standard deviations of the sampies of x and y. Incorporating the equations for 
standard deviation and means, one gets [CDS86] 

n L(XY) - (LX)(LY) 
r = r=;:;:;;'=:::;;::==~=:;;::::=:::::::;=O=~=~=;;:: 

.j(n LX2 - (Lx)2)(n Ly2 - (Ly)2) 

If r = I, it implies that there is a perfect correlation. In such a case, all the points 
in the scatter plot williie exactly on a straight line (i.e., one line will pass through 
all the points). When there is no (linear) relationship between x and y, the value 
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of r is elose to O. As this is a statistical analysis, its accuracy will depend on the 
size of the data set (Le., the larger n is, the more accurate the correlation). 

This method determines if there is a linear correlation between two variables and the 
strength of the correlation.1t does not deterrnine the exact nature of the relationship. 
That is, the correlation coefficient analysis does not specify the straight line that 
can capture the linear relationship between the two. 1t is desirable to represent the 
linear relationship between the variables in terms of an equation. That is, if y is 
the dependent variable and x is the independent variable, we are looking for the 
constants a and b such that the equation 

y = ax +b 

elosely represents the equation capturing the relationship between x and y. To 
determine the constants a and b, typically a regression analysis needs to be done. 
The basic idea in regression analysis is to fit a line through the data points in the 
scatter plot so that the sum of squares of the distance from the line of the points 
is rninimized. With this as the objective, these coefficients can be determined as 
[CDS86] 

(Xi - i)(Yi - ji) 
a=---~-'c-

L(Xi - x)2 
b=ji-ai 

The line specified by these coefficients is called the regression Une. This regression 
line captures the linear relationship between Y and x. Note that a regression line 
can be "fitted" with any data set; whether fitting a line is proper or not is determined 
by the correlation coefficient. 

Once such a model between two variables is built for a process (and the two 
variables have been shown to have a strong correlation), the y value for a project 
can be estimated if its x value is known. That is, if for an ongoing project only the 
x value can be measured but the desire of the project management is to estimate 
the value of the variable y, this equation can be used for estimation. So, what is 
being done is that from the data ofthe completed projects (or the past projects) for 
which both the x and y values are known, the equation representing the relationship 
between x and y is determined, which is then used by the project management to 
estimate the value of y for projects where only x is known. Note that this approach 
implies that the process is under statistical control. 

If the variable of interest y is thought to be dependent on more than one vari
able, then multivariate regression can be performed on the data set from the past 
projects. If the relationship between the two variables is not linear, then some
times data transformation can be done to convert it into a linear relation. After this 
transformation, linear regression can be applied. For example, suppose y and x are 
believed to be related by a nonlinear equation of the type 

y =axb 
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This equation can be converted into a linear equation by taking a log on both sides, 
giving the equation logy = loga+b logx. Now ifwe considerlog y as Y and logx 
as X we have a linear equation, and we can perform the regression analysis on 
the data set (logxI,logyd, ... , (logxn,logYn). By regression analysis constants 
log a and b will be determined. From this, the original nonlinear equation can be 
determined. We leave the details of this as an exercise. 

Perhaps the most common example of using the models built this way is in cost 
estimation, where total effort is modeled as a function of the size of the project. 
The model for the process to be used for a project can be used to estimate the cost 
ofthe project, once the size is estimated (or determined). We will see these models 
in more detail when we discuss cost estimation in Chapter 4. 

The values of the measured variables is used in project management in other ways. 
Rather than building formal models in the manner described earlier, imprecise 
models are developed, which then form guidelines for project management. For 
example, an informal model may be constructed with some module complexity 
metric (say cyclomatic complexity), as folIows. Based on experience with earlier 
projects it is seen that modules with cyclomatic complexity values greater than 10 
show a lot of errors. Based on this experience, a model is built that those modules 
with a complexity greater than 10 are generally "error prone." Based on this model, 
the project management can require that all modules whose cyclomatic complexity 
is greater than 10 have to be reviewed, or tested individually. In other words, the 
cyclomatic complexity number is not being used to predict some other value, but 
it is being used directly for project management (in this case to ensure that quality 
objectives are met). Note that even this type of use requires developing some sort 
of model. Only the model need not be precise. Still, whether a complexity of 10 
is acceptable or not (which essentially is the model here) has to be decided for the 
organization. In some cases, as these models are approximate, models from other 
organizations can also be used. 

If, on the other hand, the project management wants to use the cyclomatic com
plexity to estimate the number of errors that exist in a module or the effort that 
will be required to test the module, then an estimation model needs to be built as 
described earlier. In other words, a model for predicting the total number of errors 
or the total testing effort will have to be built from the complexity metric being 
used (assuming that a strong correlation exists). 

2.6.2 Process Improvement and Maturity 

There is now considerable interest in improving the software process as it is rec
ognized that only by improving the process can the quality and productivity be 
improved. Process improvement requires understanding the current process and 
its deficiencies and then taking actions to remove the deficiencies. This is possible 
only if the cutrent process is under statistical control. Otherwise, even character-
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izing the process is not possible, leave aside improving it. Process improvement is 
an advanced topic beyond the scope ofthis book. We only present some basic ideas 
here. We present two frameworks that have been used by various organizations to 
improve their process. 

Capability Maturity Model 

To improve its software process, an organization needs to first understand the status 
of the current status and then develop a plan to improve the process. It is generally 
agreed that changes to a process are best introduced in small increments and that 
it is not feasible to totally revolutionize a process. The reason is that it takes time 
to intemalize and truly follow any new methods that may be introduced. And 
only when the new methods are properly implemented will their effects be visible. 
Introducing too many new methods for the software process will make the task of 
implementing the change very hard. 

If we agree that changes to a process must be introduced in small increments, the 
next question is out of a large set of possible enhancements to a process, in what 
order should the improvement activities be undertaken? Or what small change 
should be introdueed first? This depends on the eurrent state of the process. For 
example, ifthe proeess is very primitive there is no point in suggesting sophisticated 
metrics-based project control as an improvement strategy; ineorporating it in a 
primitive process is not easy. On the other hand, if the process is already using 
many basic models, such a step might be the right step to further improve the 
proeess. Hence, deciding what aetivities to undertake for process improvement is a 
function of the current state of the process. Onee some process improvement takes 
place, the process state may change, and a new set of possibilities may emerge. This 
coneept of introducing changes in small increments based on the eurrent state of the 
process has been captured in the Capability Maturity Model (CMM) framework. 
The CMM framework provides a general roadmap for process improvement. We 
give abrief description of the CMM framework here; the reader is referred to 
[Hum89, P+93] for more details. 

Software process capability describes the range of expected results that can be 
achieved by following the process [P+93]. The process capability of an organization 
deterrnines what can be expected from the organization in terms of quality and 
productivity. The goal of process improvement is to improve the process capability. 
A maturity level is a well-defined evolutionary plateau toward achieving a mature 
software process [P+93]. Based on the empirical evidence found by examining 
the proeesses of many organizations, the CMM suggests that there are five well
defined maturity levels for a software process. These are initial (level I ), repeatable, 
defined, managed, and optimizing (level 5). The CMM framework says that as 
process improvement is best incorporated in small increments, processes go from 
their current levels to the next higher level when they are improved. Hence, during 
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the course of process improvement, a process moves from level to level until it 
reaches levelS. This is shown in Figure 2.14 [P+93]. 

The CMM provides characteristics of each level, which can be used to assess 
the current level of the process of an organization. As the movement from one 
level is to the next level, the characteristics of the levels also suggest the areas 
in which the process should be improved so that it can move to the next higher 
level. Essentially, for each level it specifies the areas in which improvement can be 
absorbed and will bring the maximum benefits. Overall, this provides a roadmap 
for continually improving the process. 

The initial process (levell) is essentially an ad hoc process that has no formalized 
method for any activity. Basic project controls for ensuring that activities are being 
done properly and that the project plan is being adhered to are missing. In crisis 
the project plans and development processes are abandoned in favor of a code
and-test type of approach. Success in such organizations depends solelyon the 
quality and capability of individuals. The process capability is unpredictable as 
the process constantly changes. Organizations at this level can benefit most by 
improving project management, quality assurance, and change control. 

In a repeatable process (level 2), policies for managing a software project and 
procedures to implement those policies exist. That is, project management is weIl 
developed in ,a process at this level. Some of the characteristics of a process at 
this level are: project commitments are realistic and based on past experience with 
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similar projects, cost and schedule are tracked and problems resolved when they 
arise, formal configuration control mechanisms are in place, and software project 
standards are defined and followed. Essentially, results obtained by this process 
can be repeated as the project planning and tracking is formal. 

At the defined level (level 3) the organization has standardized on a software pro
cess, which is properly documented. A software process group exists in the orga
nization that owns and manages the process. In the process each step is carefully 
defined with verifiable entry and exit criteria, methodologies for performing the 
step, and verification mechanisms for the output of the step. In this process both 
the development and management processes are formal. 

At the managed level (level 4) quantitative goals exist for process and products. Data 
is collected from software processes, which is used to build models to characterize 
the process. Hence, measurement plays an important role in a process at this level. 
Due to the models built, the organization has a good insight in the process and its 
deficiencies. The results of using such a process can be predicted in quantitative 
terms. 

At the optimizing level (level 5), the focus of the organization is on continuous 
process improvement. Data is collected and routinely analyzed to identify areas 
that can be strengthened to improve quality or productivity. New technologies 
and tools are introduced and their effects measured in an effort to improve the 
performance of the process. Best software engineering and management practices 
are used throughout the organization. 

This CMM framework can be used to improve the process. Improvement requires 
first assessing the level of the current process. This is typically done through the 
use of a detailed questionnaire, whose answers are used to judge the current level. 
Based on the current level, the areas in which maximum benefits can be derived 
are known from the framework. For example, for improving a process at level 1 
(or for going from level 1 to level 2), project management and the change control 
activities must be made more formal. The complete CMM framework provides 
more details about which particular areas need to be strengthened to move up the 
maturity framework. This is generally done by specifying the key process areas 
of each maturity level, which in turn, can be used to determine which areas to 
strengthen to move up. Some of the key process areas of the different levels are 
shown in Figure 2.15 [P+93]. 

Though the CMM framework specifies the process areas that should be improved 
to increase the maturity of the process, it does not specify how to bring about the 
improvement. That is, it is essentially a framework that does not suggest detailed 
prescriptions for improvement, but guides the process improvement activity along 
the maturity levels such that process improvement is introduced in increments 
and the improvement activity at any time is clearly focused. Many organizations 
have successfully used this framework to improve their processes and hundreds of 
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FIGURE 2.15. Some key process areas [P+93]. 

organizations have undergone formal or self-assessment of their capability. It is a 
major driving force for process improvement. 

Quality lmprovement Paradigm and GQM 

A somewhat different approach for improving a process is taken by the Quality 
Improvement Paradigm (QIP) [BR88, BR94]. QIP does not specify levels or what 
areas to focus on for improvement. It gives a general method for improving a pro
cess, essentially implying that what constitutes improvement of a process depends 
on the organization to which the process belongs and its objectives. The basic idea 
behind this approach is to understand the current process, set objectives for im
provement, and then plan and execute the improvement actions. The QIP consists 
of six basic steps [BR88, BR94]: 

• Characterize. Understand the current process and the environment it operates 
in. 

• Set Goals. Based on the understanding of the process and the environment 
and objectives of the organization, set quantifiable goals for performance 
improvement. The goals should be reasonable. 

• Choose process. Based on the characterization and goals, choose the compo
nent pro,cesses that should be changed to meet the goals. 
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• Execute. Execute projects using the processes and provide feedback data . 

• Analyze. Analyze the data at the end of each project. From the analysis, deter
mine problems and make recommendations for improvements to be applied 
on future projects. 

• Package. Based on the experience gained from many projects, define and 
formalize the changes to be made to processes and expectation from the new 
processes. 

An important component of the QIP is the feedback cyde from the projects. The 
basic input for process improvement is provided by collecting appropriate data 
about existing projects. However, for the data to be useful for process improvement, 
it is imperative that data collection be very focused, and it should be dear how data 
is to be used in analysis. Collecting data randomly, just because the data is available, 
is of little use and leads to large volumes of useless data. 

For collecting proper data that will serve the purpose of process improvement, the 
Goal/QuestioniMetrics (GQM) paradigm is frequently used. The GQM paradigm 
suggests a general framework for collecting data from projects that can be used for 
a specific purpose [BW84, BCR94]. The basic premise behind this approach is that 
there is no "general set" of metrics to be collected. An organization must specify its 
goals before measuring anything. Then these goals should be translated to specific 
data along with a framework to evaluate the data collected. In other words, what 
should be measured and how it should be evaluated depends on the goals of the 
organization. The fact that many organizations tend to measure and track at least 
some metrics like effort spent, total number of errors found, and time spent is 
because most organizations have some similar goals like keeping the cost within 
projections and keeping the quality high. The similarity of some basic goals gives 
rise to a sort of "minimal set" of measures that every organization must keep track 
of. In general, however, the measurement must be for satisfying some objective of 
the organization. 

GQM proposes that to start the measurement activity we must set quality or pro
ductivity goals at some level (e.g., process level or a specific project level). An 
example of the goal could be to reduce the total number of field defects found in 
the products released by the organization. In this example, the goal is to improve 
the quality of the process so that fewer defects pass by. An organization may have 
many goals. For each goal, a set of questions has to be derived that, if answered 
satisfactorily, will let us see whether or not we are achieving the goal, that is, ob
tain a set of questions that define the goal. For example, if the goal is to reduce 
the number of field defects, a question could be what is currently the quality of 
the released products. The next step consists of defining metrics that need to be 
collected to answer these questions that have been framed for each goal. In other 
words, what data should be collected to provide an objective answer to each ques
tion? For example, for the question given earlier, one metric could be the number 
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of field defects per KLOC, found within one year of the release of the product. 
Finally, data collection mechanisms have to be decided. 

GQM is a top-down approach that starts from the objectives and works its way 
down to the metrics needed. Though it is a general framework that can be used for 
metrics collection for project management, it is frequently used in the context of 
process improvement. The QIP and GQM have been used successfully by many 
organizations to improve their processes. 

2.7 Summary 

There are three important entities that software engineering deals with-processes, 
projects, and products. Processes relate to the general method of doing something, 
project is an instance where a process is applied, and products are the outcomes 
of projects. A software process consists of different component processes that 
deal with these entities. The development process focuses on the development 
of products, project management deals with the activities needed to manage a 
development project, the configuration management process deals with change 
that takes place during a project, and the process management process deals with 
the issue of managing changes to the process itself and process improvement. 

We have seen that a software process, comprising at least these four component 
processes, must have some features in order to satisfy the basic software engi
neering objectives. The basic property is that the process must be predictable, that 
is, following the same process produces more or less similar results. The process 
must also support testability and maintainability, as testing and maintenance are 
the activities that consume the most resources. The process should support defect 
removal and prevention throughout development, as the longer a defect stays, the 
more costly it is to remove it. And the process must be self-improving. 

Then we studied the four major component processes of the software process. 
The software development process is traditionally the one that has been most 
emphasized as it deals with the development and quality activities of software 
development. Various process models have been proposed. The waterfall model is 
conceptually the simplest model of software development, where the requirement, 
design, coding, and testing phases are performed in linear progression. There is a 
defined output after each phase, which is certified before the next phase begins. 
It is the most widely used model, even though it has limitations. Another major 
model is the prototyping model, where a prototype is built before building the final 
system. Iterative enhancement and the spiral model are other models. 

Project management consists of three major phases-planning, monitoring and 
control, and termination analysis. Much of project management revolves around 
the project plan, which is produced during the planing phase. The monitoring and 



www.manaraa.com

70 2. Software Processes 

Exercises 

control phase requires accurate data about the project to reach project management, 
which uses this data to determine the state of the project and exercise any control 
it desires. For this purpose, metrics play an essential role in providing the project 
management quantified data about the state of development and of the products 
produced. 

The software configuration management process deals with the change that is 
inevitable in a software development project. The development models cannot 
typically handle change, which can come at any time during development. And 
changes can have strong effects on cost and quality. Hence, to ensure that the cost 
and quality objectives are met, the development project is put under the configura
tion management process. Basically, the process takes change requests, analyzes 
them, schedules the changes to be done, and then tracks the changes. The basic 
objective is to see that the cost and quality are not sacrificed by the change activity. 
This process is typically performed by the configuration control board. 

The process management process is frequently performed by the software engi
neering process group. A basic objective of this process is to study the existing 
process and characterize it so that its expected outcomes are known and can be used 
for project management. For this, models quantifying expected outcomes for the 
process are buBt, based on past projects. The other major activity ofthis process is 
to improve the process so that the cost and quality of future products are improved. 
Process management is an advanced topic that will not be discussed further in this 
book. 

In the rest of the book we will focus on the various activities that are generally 
performed during a software development project. That is, the activities that are 
generally performed in the development processes are discussed in more detail in 
the rest of the book. For each activity, some of the activities relating to project 
management are also discussed. 

1. What are the other (minor) component processes in a software process? 
Describe the purpose of each. 

2. How can you determine if a process is under statistical control for a property 
of interest (say cost)? 

3. What are the major outputs in a development project that follows the proto
typing model? 

4. Draw a process model to represent your current approach to developing 
software. 

5. Which of the development process models discussed in this chapter would 
you follow'for the following projects? Give justifications. 
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(a) A simple data processing project. 

(b) A data entry system for office staff who have never used computers before. 
The user interface and user-friendliness are extremely important. 

(c) A new system for comparing fingerprints. It is not dear if the cur
rent algorithms can compare fingerprints in the given response time 
constraints. 

(d) A spreadsheet system that has some basic features and many other desir
able features that use these basic features. 

(e) A new missile tracking system. It is not known if the current hard
ware/software technology is mature enough to achieve the goals. 

(f) An on-line inventory management system for an automobile industry. 

(g) A fllght control system with extremely high reliability. There are many 
potential hazards with such a system. 

6. It is reasonable to assume that if software is easy to test, it will be easy 
to maintain. Suppose that by putting extra effort in design and coding you 
increase the cost of these phases by 15%, but you reduce the cost of testing 
and maintenance by 5%. Will you put in the extra effort? 

7. What are software metrics? What is the role of metrics in project management? 
What is the role of metrics in process management? 

8. Give specific examples of some metrics that can be used to control a software 
project. 

9. Give specific examples of some metrics that can be used to manage and 
improve a software process. 

10. Suppose the relations hip between y and x is of the form y = axb • Given data 
from past projects, specify how a and b can be determined. 

11. Suppose you can measure the number of defects detected during the various 
reviews and testing. However, the customer requires an estimate of the number 
of defects remaining at delivery time. How will you build a model to predict 
this? Assume the existence of any data you need. 
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Software Requirements Analysis and 
Specification 

As we mentioned earlier, a fundamental problem of software engineering is the 
problem of scale. The complexity and size of applications employing automation, 
and consequently the complexity and size of software systems, are continuously 
increasing. As the sc ale changes to more complex and larger software systems, new 
problems occur that did not exist in smaller systems (or were of minor significance), 
which leads to a redefining of priorities of the activities that go into developing 
software. Software requirement is one such area, to which little importance was 
attached in the early days of software development, as the emphasis was on coding 
and design. The tacit assumption was that the developers understood the problem 
clearly when it was explained to them, generally informally. 

As systems grew more complex, it became evident that the goals of the entire 
system could not be easily comprehended. Hence the need for a more rigorous 
requirements phase arose. Now, for large software systems, requirements analysis 
is perhaps the most difficult and intractable activity; it is also very error-prone. Many 
software engineers believe that the software engineering discipline is weakest in 
this critical area. 

Some of the difficulty is due to the scope of this phase. The software project is 
initiated by the client's needs. In the beginning, these needs are in the minds of 
various people in the client organization. The requirement analyst has to identify 
the requirements by talking to these people and understanding their needs. In 
situations where the software is to automate a currently manual process, many 
of the needs can be understood by observing the current practice. But no such 
methods exist for systems for which manual processes do not exist (e.g., software 
for a missile control system) or for "new features," which are frequently added 
when automating an existing manual process. For such systems, the requirements 
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problem is complicated by the fact that the needs and requirements of the system 
many not be known even to the user-they have to be visualized and created. 

Hence, identifying requirements necessarily involves specifying what some people 
have in their minds (or what will come to their minds when they visualize it). As 
the information in their minds is by nature not formaIly stated or organized, the 
input to the software requirements specification phase is inherently informal and 
imprecise, and it is likely to be incomplete. When inputs from multiple people are 
to be gathered, as is often the case, these inputs are likely to be inconsistent as weIl. 

The requirements phase translates the ideas in the minds of the c1ients (the input), 
into a formal document (the output ofthe requirements phase). Thus, the output of 
the phase is a set of formally specified requirements, which hopefully are complete 
and consistent, while the input has none of these properties. Clearly, the process of 
specifying requirements cannot be totally formal; any formal translation process 
producing a formal output must have a precise and unambiguous input. This is why 
the software requirements activity cannot be fully automated, and any method for 
identifying requirements can be at best a set of guidelines. 

In this chapter we will discuss what requirements are, why requirement specifica
tion is important, how requirements are analyzed and specified, how requirements 
are validated, and some metrics that can be applied to requirements. It ends with 
the SRS of the running case used throughout the book. 

3.1 Software Requirements 

IEEE defines a requirement as "(1) A condition of capability needed by a user 
to solve a problem or achieve an objective; (2) A condition or a capability that 
must be met or possessed by a system ... to satisfy a contract, standard, specifi
cation, or other formally imposed document. ... " [IEE87]. Note that in software 
requirements we are dealing with the requirements of the proposed system, that 
is, the capabilities that the system, which is yet to be developed, should have. It is 
because we are dealing with specifying a system that does not exist in any form 
(the manual form of existence does not generally have the same capability as the 
eventual automated system) that the problem of requirements becomes compli
cated. Regardless of how the requirements phase proceeds, it ultimately ends with 
the Software Requirements Specification (SRS). Generally, the SRS is a document 
that completely describes what the proposed software should do without describing 
how the software will do it. The basic goal of the requirements phase is to produce 
the SRS, which describes the complete extemal behavior of the proposed software 
[Dav93]. 

However, producing the SRS is easier said than done. A basic limitation for this is 
that the user needs keep changing as the environment in which the system was to 
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function changes with time. This happens more in complex applications, where all 
the needs may not be known to any set of people during the requirements phase. 
This leads to arequest for requirement changes even after the requirements phase 
is done and the SRS is produced. The problem gets worse because frequently the 
SRS and the process of requirements analysis and specification give additional 
ideas to clients about what is needed from the system. Hence, requirement changes 
are a fact of life for most complex systems. 

Changing requirements is a continuous irritant for software developers and fre
quently leads to bittemess between the client and developers. Though many changes 
come due to the changing needs of the client, many of the change requests have their 
origin in incorrect interpretation or specification of the requirements. These errors 
come in the SRS largely due to the requirements phase not being done thoroughly 
and the client and the requirement analysts not performing the task rigorously. 
Change requests that have their origins in these types of errors in the SRS can 
clearly be avoided, or at least reduced considerably, by properly performing the 
requirements phase. 

Even while accepting that some requirement change requests are inevitable, there 
are still pressing reasons why a thorough job should be done in the requirements 
phase to produce a high-quality and relatively stable SRS. Let us first look at some 
of these reasons. 

3.1.1 Need for SRS 

The origin of most software systems is in the need of a client, who either wants 
to automate an existing manual system or desires a new software system. The 
software system itself is created by the developer. Finally, the completed system 
will be used by the end users. Thus, there are three major parties interested in a 
new system: the client, the users, and the developer. Somehow the requirements 
for the system that will satisfy the needs of the clients and the concems of the 
users have to be communicated to the developer. The problem is that the client 
usually does not understand software or the software development process, and 
the developer often does not understand the client's problem and application area. 
This causes a communication gap between the parties involved in the development 
project. A basic purpose of software requirements specification is to bridge this 
communication gap. SRS is the medium through which the client and user needs 
are accurately specified; indeed SRS forms the basis of software development. A 
good SRS should satisfy all the parties-something very hard to achieve-and 
involves trade-offs and persuasion. 

Another important purpose of developing an SRS is helping the clients understand 
their own needs. As we mentioned earlier, for software systems that are not just 
automating existing manual systems, requirements have to be visualized and cre
ated. Even where the primary goal is to automate an existing manual system, new 
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requirements emerge as the introduction of a software system offers new potential 
for features, such as providing new services, performing activities in a different 
manner, and collecting data, that were either impossible or infeasible without a 
software system. In order to satisfy the client, which is the basic quality objective 
of software development, the client has to be made aware of these potentials and 
aided in visualizing and conceptualizing the needs and requirements of his orga
nization. The process of developing an SRS usually helps in this, as it forces the 
client and the users to think, visualize, interact, and discuss with others (includ
ing the requirement analyst) to identify the requirements. Hence one of the main 
advantages is: 

• An SRS establishes the basis for agreement between the client and the supplier 
on what the software product will do. 

This basis for agreement is frequently formalized into a legal contract between 
the client (or the customer) and the developer (the supplier). So, through SRS, the 
client clearly describes what it expects from the supplier, and the developer clearly 
understands what capabilities to build in the software. Without such an agreement, 
it is almost guaranteed that once the development is over, the project will have an 
unhappy client, which almost always leads to unhappy developers. (The classic 
situation is, client: "Heyf there is a bug"; Developer: "No, it is a software feature.") 
Actually, the reality of the situation is that even with such an agreement, the client 
is frequently not satisfied! A related, but important, advantage is: 

• An SRS provides a reference for validation of the final product. 

That is, the SRS helps the client determine if the software meets the requirements. 
Without a proper SRS, there is no way a client can determine if the software being 
delivered is what was ordered, and there is no way the developer can convince the 
client that all the requirements have been fulfilled. 

Although, providing the basis of agreement and validation should be strong enough 
reasons for both the client and the developer to do a thorough and rigorous job of 
requirement understanding and specification, there are other very practical and 
pressing reasons for having a good SRS. 

We have seen that the primary forces driving a project are cost, schedule, and 
quality. Consequently, anything that has a favorable effect on these factors should be 
considered desirable. Boehm found (as reported in [Dav93]) that in some projects 
54% of all the detected errors were detected after coding and unit testing was 
done and that 45% of these errors actually originated during requirement and 
early design stages. That is, a total of approximately 25% errors occur during 
requirement and early design stages. Areport on errors in the A-7 project shows 
that about 80 errors were detected in the requirements document over aperiod of 
few months that resuIted in change requests [BW81]. Another report indicates that 
more than 500 errors were found in an SRS that was earlier approved (as reported 
in [Dav93]). Similarly, another project reported that more than 250 errors were 
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found in a previously reviewed SRS by stating the requirements in a structured 
manner and using tools to analyze the document [Dav89]. 

It is clear that many errors are made during the requirements phase. And an error in 
the SRS will most likely manifest itself as an error in the final system implementing 
the SRS; after all, ifthe SRS document specifies a wrong system (i.e., one that will 
not satisfy the client's objectives), then even a correct implementation of the SRS 
will lead to a system that will not satisfy the client. Clearly, if we want a high
quality final software that has few errors, we must begin with a high-quality SRS. 
In other words, we can conclude that: 

• A high-quality SRS is aprerequisite to high-quality software. 

Finally, we show that the quality of SRS has an impact on cost (and schedule) of 
the project. We have already seen that errors can exist in the SRS. We saw earlier 
that the cost of fixing an error increases almost exponentially as time progresses. 
That is, a requirement error, if detected and removed after the system has been 
developed can cost up to 100 times more than removing it during the requirements 
phase itself. Based on the data given in [BW81], whichreported that on an average it 
took about 2.4 person-hours to make a change to the requirements to correct an error 
(this average was without considering the outliers; with the outliers the average was 
about 5.0 person-hours), we assume that the average cost of fixing a requirement 
error in the requirement phase is about 2 person-hours. From this and the relative 
cost of fixing errors as reported in a multicompany study in [Boe76, Boe81] (these 
costs were reflected graphically in Figure 1.1), the approximate average cost of 
fixing requirement errors (in person-hours) depending on the phase is shown in 
Table 3.1. 

Clearly, we can have a tremendous reduction in the project cost by reducing the 
errors in the SRS. A simplified example will illustrate this point. Using the costs 
given earlier, by investing an additional 1 00 person-hours in the requirements phase, 
an average of about 50 new requirements errors will be detected and removed. (This 
oversimplification is likely to hold only for the errors detected early in the phase. 
As the number of remaining errors is reduced, the effort required to detect each 
error is likely to inGrease.) If these errors are not detected in the requirements 
phase, they will be detected in some later phase. In the A-7 project the following 

Phase Cost (person-hours) 

Requirements 2 
Design 5 
Coding 15 
Acceptance test 50 
Operation and maint. 150 

TABLE 3.1. Cast af fixing requirement errors 
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distribution was found [BW81]: of the requirements eITors that remain after the 
requirements phase, about 65% are detected during design, 2% during coding, 30% 
during testing, and 3% during operation and maintenance. This type of distribution 
can be expected in general, as most of the requirements eITors are likely to be 
caught in the design phases and the acceptance test phase, while the rest will be 
caught in other phases. Assurne that these 50 requirement eITors, if not removed, 
would have been detected (and fixed) in the later phases with the distribution given 
earlier. The total cost of fixing the eITors in this case will be 

32.5 * 5 + 1 * 15 + 15 * 50 + 1.5 * 150 = 1152 person-hours! 

In other words, by investing additional 1 00 person-hours in the requirements phase 
in this example, the development cost could be reduced by 1152 person-hours-a 
net reduction in cost of 1052 person-hours! 

This can be viewed in another manner. An eITor that remains in the requirements 
will be detected in the later phases with the following probabilities: 0.4 in design, 
0.1 in coding and unit testing, 0.4 in acceptance testing, 0.1 during operation and 
maintenance. And the cost of fixing a requirement eITor in these phases was given 
earlier. Hence, the expected cost of fixing a requirement eITor that is not removed 
during the requirements phase is 0.4 * 5 + 0.1 * 15 + 0.4 * 50 + 0.1 * 150 = 38.5 
person-hours. Therefore, if the expected effort required to detect and remove an 
eITor during the requirements phase is less than this, it makes economic sense to 
spend the extra effort in the requirements phase and remove the eITor. 

This is not the complete story. We know that requirements frequently change. As 
mentioned earlier, though some of the changes are inevitable due to the changing 
needs and perceptions, many changes come as the requirements were not properly 
analyzed and not enough effort was expended to validate the requirements. With a 
high-quality SRS, requirement changes thatcome about due to improperly analyzed 
requirements should be reduced considerably. And as changes tend to escalate the 
cost and throw the project schedule haywire, a reduction in the requirement change 
traffk will reduce the project cost, in addition to improving its chances of finishing 
on schedule. 

Let us illustrate this with another simplified example. It is estimated that 20 to 
40% of the total development effort in a software project is due to rework, much of 
which occurs due to change in requirements [Boe87]. The cost of the requirement 
phase is typically about 6% of the total project cost, according to the COCOMO 
model [Boe81] (the model is discussed in more detail in Chapter 4). Consider a 
project whose total effort requirement is estimated to be 50 person-months. For this 
project, the requirements phase consumes about 3 person-months. If by spending 
an additional 33% effort in the requirements phase we reduce the total requirement 
change requests by 33%, then the total effort due to rework (assuming all rework 
is due to requirement change requests) will reduce from 10 to 20 person-months 
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to 6 to 12 person-months, resulting in a total saving of 5 to 11 person-months, i.e., 
a saving of 10-22% of the total cost! From these, we can conclude that 

• A high-quality SRS reduces the development cost. 

Hence, the quality of the SRS impacts customer (and developer) satisfaction, sys
tem validation, quality of the final software, and the software development cost. 
The critical role the SRS plays in a software development project should be ev
ident from these. One will assurne that these reasons will ensure that every soft
ware project has a high-quality SRS as its starting point. Unfortunately, that is 
not common practice in the industry. Due to lack of understanding of the role and 
importance of SRS, and in an effort to "speed up" development and "cut costs" by 
eliminating "nonessential" activities (which frequently means anything other than 
coding) many software projects start with a low-quality SRS that is incomplete and 
full of ambiguities. And the results are consistent with this practice-most of the 
projects have cost and schedule overruns (rather than reducing cost and time, as 
is the intention) and the software industry has developed a reputation of providing 
poor-quality products. 

3.1.2 Requirement Process 

Tbe requirement process is the sequence of activities that need to be performed in 
the requirements phase and that culminate in producing a high-quality document 
containing the software requirements specification (SRS). Whereas the process 
ends in producing an SRS, its starting point depends on whether the software to be 
developed is a stand-alone software problem only or is one in which software is 
a component of the system that requires a combination of hardware and software 
[Dav93]. In the case where only the software is needed to solve the problem, the 
requirement process starts when the problem has been identified or a new idea for 
software arises [Dav93]. In the other case, where a system comprising hardware 
and software is expected to form the solution of the problem at hand, the starting 
point of the project is the system requirements specification. Tbis is followed by 
a system design, which determines what parts of the solution belong to hardware 
and what parts belong to software. Once the system design is done, the scope of 
software is defined and the software requirements phase is initiated. 

In much of the book, we will focus on the case where the software forms the 
complete solution. In such a situation, as mentioned earlier, the origin of most 
software development projects is the need of some clients, and the requirements 
for the software are originally in the minds of the clients and the users of the 
software. To satisfy the ultimate objective of the requirements phase-to produce 
a high-quality SRS document-the requirements process has to ensure that as far 
as possible aB the requirements of the software are elicited and analyzed, clearly 
specified in the document describing the SRS, and that the SRS if of high-quality. 
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Due to this, the requirements phase typically consists of three basic activities: 
problem or requirement analysis, requirement specijication, and requirements val
idation. The first aspect, perhaps the hardest and most nebulous, deals with un
derstanding the problem, the goals, the constraints, ete. Problem analysis starts 
with some general "statement of need" or a high-level "problem statement." Dur
ing analysis the problem domain and the environment are modeled in an effort to 
understand the system behavior, eonstraints on the system, its inputs and outputs, 
ete. The basic purpose ofthis aetivity is to obtain a thorough understanding ofwhat 
the software needs to provide. The understanding obtained by problem analysis 
forms the basis of the seeond aetivity-requirements specification-in which the 
focus is on clearly specifying the requirements in a document. Issues, such as rep
resentation, specification languages, and tools, are addressed during this activity. 
As analysis produces large amounts of information and knowledge with possible 
redundancies; properly organizing and deseribing the requirements is an important 
goal of this activity. The final activity focuses on validating that what has been 
specified in the SRS are indeed all the requirements of the software and making 
sure that the SRS is of good quality. The requirements process terminates with the 
produetion of the validated SRS. 

Though it seems that the requirements process is a linear sequence of these three 
activities, in reality it is not so for anything other than trivial systems. In most real 
systems, there is eonsiderable overlap and feedback between these activities. So, 
some parts of the system are analyzed and then specified while the analysis of the 
other parts is going on. Furthermore, if the validation activities reveal problems 
in the SRS, it is likely to lead to further analysis and specifieation. However, in 
general, for a part of the system, analysis preeedes specification and specifieation 
precedes validation. This requirement proeess is shown in Figure 3.1. 

As shown in the figure, from the specification activity we may go back to the anal
ysis aetivity. This happens as frequently some parts of the problem are analyzed 
and then specified before other parts are analyzed and speeified. Furthermore, the 
process of speeifieation frequently shows shortcomings in the knowledge of the 
problem, thereby necessitating further analysis. Onee the specifieation is "com
plete" it goes through the validation activity. This aetivity may reveal problems 
in the specifications itself, which requires going back to the specifieation step, 
or may reveal shorteomings in the understanding of the problem, which requires 
going back to the analysis aetivity. 

During requirements analysis the foeus is on understanding the system and its 
requirements. For a complex system, this is a hard task, and the time-tested method 
of"divide-and-eonquer," i.e., deeomposing the problem or system into smallerparts 
and then understanding the parts and their relationships, is inevitably applied to 
manage the complexity. Also, for managing the complexity and the large volume 
of information that becomes available during analysis, various structures are used 
during analysis to represent the information to help view the system as aseries 
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Validated SRS 

FIGURE 3.1. The requirement process. 

of abstractions. Examples of these structures are data flow diagrams and object 
diagrams (more about these in the next section). For a portion of the system, 
analysis typically precedes specification. Once the analysis is complete and the 
structures built, the system part has to be specified. 

The transition from analysis to specification, though, seems as if it should be simple; 
this is not so. In fact, this transition can be quite hard. The reason for this transition 
being hard is the different objectives of the two activities. In specification, we have 
to specify only what the software is supposed to do, Le., focus on the external 
behavior of the system. In order to identify all the external behaviors, the structure 
of the problem and its various components need to be c1early understood besides 
understanding its inputs and outputs. However, the structure itself may not be 
of much use in specification, as its focus is exc1usively on the extern al behavior 
or the eventual system, not the internal structure of the problem domain. Due to 
this, one should not expect that once the analysis is done, specification will be 
straightforward. Furthermore, many "outputs" of the analysis are not used directly 
in the SRS. This does not mean that these outputs are not useful-they are essential 
in modeling the problem that leads to the proper understanding of the requirements, 
which is aprerequisite to specification. Hence, the use of the analysis activity and 
structures that it built may be indirect, aiding understanding rather than directly 
aiding specification. 

It is worth noting that some similarities exist in the analysis activity and the de
sign activity. As pointed out by Davis [Dav93], the basic problem during soft
ware design is'the same-managing the complexity. The approach used there is 
similar--decomposition and building structures to represent the system as aseries 
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of abstractions. Due to this similarity, the approaches used for problem analysis 
and design are frequently similar (e.g., data ftow diagrams and object diagrams are 
used in analysis as weIl as design). However, although the approaches are similar, 
the objective of the two activities is completely different. Whereas analysis deals 
with the problem domain with the basic objective of understanding the problem, 
design deals with the solution domain with the basic objective of optimizing the 
design (with respect to some criteria that is typically specified in the requirements) 
[Dav93]. Due to this, the application of similar approaches produces different 
structures during analysis and design. It is sometimes mistakenly believed that the 
structures produced during analysis will and should be carried through in design. 
This comes from a basic misunderstanding about the objectives of the two activi
ties. Though some of the structures may eventually get used in design, this should 
be done only if the analysis structures are consistent with the design objective. 

Finally, there is the issue of the level of detail that the requirement process should 
aim to uncover and specify. This is also an issue that cannot be easily resolved 
and that depends on the objective of the requirement specification phase. We have 
stated that the objective of the SRS is to specify what is needed from the system, 
not how the system will provide it. The main problem comes because how at one 
level of abstraction may be what at a lower level of abstraction [Dav93]. Though 
one can construct various levels of abstraction where what at a lower level is how at 
a higher level, two levels can clearly be seen as pertinent to software requirement, 
depending on the objective of the requirement activity. 

If the objective is to define the overall broad needs of the system, the requirements 
can be very abstractly stated. Generally, the purpose of such requirements is to per
form some feasibility analysis or use the requirements for competitive bidding. At 
the lower level are the requirements where all the behavior and extern al interfaces 
of the software are clearly specified. Such requirements are clearly very detailed 
and are suitable for software development. It can be seen that the requirements (or 
the what) at the lower level can be viewed as specifying the how when viewed from 
the higher level of abstraction. 

An example can illustrate this point. Suppose a car manufacturer wants to have an 
inventory control system. At an abstract level, the requirements of the inventory 
control system could be stated in terms of the number of parts it has to track, level 
of concurrency it has to support, whether it will be on-line or batch processing, 
what types of information and reports it will provide (e.g., status of each item on 
demand, purchase orders for items that are low in inventory, consumption patterns), 
etc. Requirements specification at this level of abstraction can be used to estimate 
the costs and perform a cost-benefit analysis. It can also be used to invite tenders 
from various developers. However, such a requirements specification is of little use 
for adeveloper given the contract to develop the software. That developer needs to 
know the exact format of the reports, all the queries that can be performed and their 
structure, total number of terminals the system has to support, the structure of the 
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major databases that will exist, etc. These are all specifying the extemal behavior 
of the software, but when viewed from the higher level of abstraction they can be 
considered as specifying how the abstract requirements should be implemented 
(e.g., the details of areport can be viewed as defining how the basic objective of 
providing information is satisfied). 

As should be c1ear, the abstract requirement level is not suitable for software 
development. Hence, we will focus mostlyon the requirements at the lower level 
in which all the details about extemal behavior that are needed for the developer 
to build a software system are specified. That is, we view the SRS as providing all 
the detailed information needed by a software developer for properly developing 
the system. However, it is worth pointing out that even when obtaining the detailed 
requirements is the objective, abstract requirements can still playa useful role for 
complex systems. As the problem analysis starts with some initial description ofthe 
system's behavior or needs, the abstract requirements can play this role (besides 
being used for competitive bidding and/or feasibility analysis). In other words, 
specifying the requirements at an abstract level is likely to be useful in producing 
the SRS that contains the detailed requirements of the system. 

The next three sections will be devoted to providing a more detailed description 
of the activities in the three major activities in the requirements phase: analysis, 
specification, and verification. 

3.2 Problem Analysis 

The basic aim of problem analysis is to obtain a c1ear understanding of the needs 
of the c1ients and the users, what exactly is desired from the software, and what the 
constraints on the solution are [Dav93]. Analysis leads to the actual specification. 
In this section we will focus on the analysis. Specification is discussed in the next 
section. People performing the analysis (often called requirement analysts or just 
analysts) are also responsible for specifying the requirements. 

Analysis involves interviewing the clients and end users. These people and the 
existing documents about the current mode of operation are the basic source of 
information for the analysts. Typically, analysts research a problem by asking 
questions of the c1ient and the user and by reading existing documents. The process 
of obtaining answers to questions that might arise in an analyst's mind continues 
until the analyst feels that "all" the information has been obtained. 

As mentioned earlier, frequently the c1ient and the users do not understand or 
know all their needs, because the potential of the new system is often not fully 
appreciated. The analysts have to ensure that the real needs of the c1ients and the 
users are uncovered, even if they don 't know them c1early. That is, the analysts are 
not just collecting and organizing information about the c1ient's organization and 
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its processes, but they also act as consultants who play an active role of helping 
the clients and users identify their needs. Due to this, it is extremely important that 
the analysts thoroughly understand the client's organization and its purpose, the 
problem domain, and the purpose of automation. In other words, for the duration 
of the analysis, the analyst has to "get in the shoes" of the clients and users. Only 
then can it help bring out those needs that even the client and the users don 't know 
initially. 

In the rest of this section, we discuss the problem of analysis in more detail. First 
we discuss some important issues relating to analysis and some principles used 
during analysis. Then we discuss the various approaches to analysis. 

3.2.1 Analysis Issues 

As analysis is the activity that feeds information to the specification activity; it 
is essential that during analysis a complete and consistent set of specifications 
emerge for the system. For achieving this, the first major problem is to obtain the 
necessary information. As mentioned earlier, people and existing documents are a 
major source of information. Besides this, brainstorming between the clients/users 
and the analysts also reveals the desired properties of the eventual system. 

Generally, during analysis, a massive amount of information is collected in the 
form of answers to questions, questionnaires, information from documentation, 
ideas, and so forth. As it is important to have the complete set of requirements, it 
is essential that this gathered information be organized so that it can be evaluated 
for completeness. Furthermore, due to the nature of the problem, determining 
completeness will require that the c1ient play an active role during this evaluation. 
This requires that the information be properly organized. Hence, the second major 
problem of analysis is how to organize the information obtained so the information 
can be effectively evaluated for completeness and consistency. 

Tbe third major problem during analysis is resolving the contradictions that may 
ex ist in the information from different parties. This is essential to ensure that the 
final specifications are consistent. The contradictions occur because the perceived 
goals of the system may be quite different for the end users and the client. Tbe 
analyst has the thankless job of resolving the contradictions and obtaining a "con
sensus," which frequently involves performing trade-offs, for example, between 
functionality and cost (or schedule). Conflicts that arise during analysis should not 
be "pushed under the rug." Instead, the analysts should try to have the conflicts 
surface and then resolve them. 

Finally, the fourth major problem is avoiding internal design. The reasons for 
the temptation to do design during analysis and why such temptations should be 
resisted were discussed earlier. 
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It should be clear that information organization plays an important role in obtaining 
information and resolving confiicts. While collecting information, the real difficulty 
arises in the later stages when it is not clear what information is missing. Once 
what needs to be determined is known, determining it is usually not hard. And 
for this, properly structuring the existing information is very important. A good 
structuring of information can "guide" the analyst and help hirn determine the 
areas of incompleteness. Similar is the case with confiict resolution; identifying 
confiicts also requires good structuring of the existing information. For this reason, 
the modeling techniques that have been proposed for analysis (we will discuss some 
later in this section) place a heavy emphasis on structuring information. 

Clearly, during analysis the interpersonal skills of an analyst are just as important 
as-if not more than-as the technical skills. Interviewing the users and clients 
requires good communication skills. The situation can be more complex if some 
users are reluctant to part with the information they possess. (Many people believe 
that knowledge is power; such people are likely to be reluctant to part with their 
knowledge, particularly if it is to be used to develop an automated system that might 
diminish their role.) Careful dealing is required to make sure that all that needs to 
be known is found out. During resolution of confiicts, good communication and 
interpersonal skills are important tools the analyst needs. Here, we will focus on 
analysis techniques only; no further discussion on interpersonal skills is provided. 

The basic principle used in analysis is the same as in any complex task: divide and 
conquer. That is, partition the problem into subproblems and then try to understand 
each subproblem and its relationship to other subproblems in an effort to understand 
the total problem. This is applied recursively by treating each subsystem as a 
system in its own right. However, to employ partitioning for analysis, the immediate 
question that comes is "partition with respect to what?" Generally, during analysis, 
partitioning is done with respect to objects or functions. That is, most analysis 
techniques view the problem as consisting of objects or functions, and aim to 
identify the objects or functions and the hierarchies and relationships between 
them. 

In the requirements phase, an object is an entity in the real world that has clearly 
defined boundaries and an independent existence. By considering real-world ob
jects, the focus of the analysis stays on the problem domain, rather than the solution 
domain. Due to this problem, analysis reveals objects like sensors, manager, au
tomobile, etc., but does not include implementation objects like trees and queues. 
(During design, when we model the solution domain, the implementation objects 
become important.) Afunction is a task, service, process, mathematical function, 
or activity that is now being performed in the real world or has to be performed by 
the system that will be built to solve the real-world problem [Dav93]. 

The concepts of state and projection can sometimes also be used effectively in 
the partitioning process. Astate of a system represents some conditions about the 
system. Frequently, when using state, a system is first viewed as operating in one 
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of the several possible states, and then object-based or function-based analysis is 
performed for each state. This approach is sometimes used in real-time software 
or process-control software. For example, a chemical plant that has to be con
trolled through digital computers can be considered to be in one of the following 
states: startup, running, or shutdown (additional states can also be defined, such as 
exceptional processing or emergency shutdown, etc.). In each state, the expected 
behavior of the control system is different. Hence, after defining the states of the 
system, for each state a function-based or object-based analysis can be performed 
for each of the three states, resulting in a c1ear understanding of what needs to be 
done by the control system in all three states. 

In projection, a system is defined from multiple points of view [YZ80]. Projecting a 
three-dimensional object on the three different two-dimensional planes is a similar 
process. While using projection, different viewpoints of the system are defined 
and the system is analyzed from these different perspectives separately using an 
object-based or function-based approach. The different "projections" obtained are 
combined to form the analysis for the complete system. The advantage of using 
projection is that trying to analyze the system from aglobaI viewpoint is difficult and 
error-prone, and one is more likely to forget some features ofthe system. Analyzing 
the system from the different perspectives is easier, as it limits and focuses the scope 
of the study. For example, an operating system can be analyzed from the perspective 
of a general user, a system programmer, or a system administrator (many operating 
system manuals are divided in this manner). By using the different perspectives, it 
is easy to ensure that the analysis is indeed complete. 

There are three basic approaches to problem analysis: informal approaches based on 
structured communication and interaction, conceptual modeling-based ap
proaches, and prototyping. The informal approaches don't use any"methodolo
gies" for problem analysis; the analyst relies on his experience and uses ques
tionnaires, forms, interviews, etc. to elicit information about the problem and the 
c1ient needs. In the conceptual modeling-based approaches, a formal model is 
built for the problem. Such approaches use the principle of partitioning for build
ing the model. Modeling approaches frequently produce some formal structures 
representing some aspects of the problem. In prototyping, the problem is analyzed 
and requirements understood through the feedback from the users and clients with 
working a prototype system. 

It should be c1ear from this that whereas problem analysis and understanding is 
an essential step before specifying (what will you specify otherwise?), modeling 
is not. The basic purpose of problem analysis is to understand the problem and its 
constraints-modeling is a means for this. Due to this, modeling is not a necessary 
step in the requirements phase; the problem can be understood or analyzed through 
other means, formal or informal. 

In the remainder of this section we will discuss a few methods for problem analysis. 
We will describe one function-oriented modeling approach and one object -oriented 
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modeling approach, and will discuss briefty some other modeling approaches. We 
will also discuss the informal approach and the prototyping approach. As the goal 
of analysis is to understand the problem domain, an analyst must be familiar with 
different methods of analysis and pick the approach that he feels is best suited to 
the problem at hand. 

3.2.2 Informal Approach 

The informal approach to analysis is one where no defined methodology is used. 
Like in any approach, the information about the system is obtained by interaction 
with the c1ient, end users, questionnaires, study of existing documents, brainstorm
ing, etc. However, in this approach no formal model is built of the system. The 
problem and the system model are essentiaIly built in the minds of the analysts 
(or the analysts may use some informal notation for this purpose) and are directly 
translated from the minds of the analysts to the SRS. 

Frequently, in such an approach, the analyst will have aseries of meetings with 
the clients and end users. In the early meetings, the c1ients and end users will 
explain to the analyst about their work, their environment, and their needs as 
they perceive them. Any documents describing the work or the organization may 
be given, along with outputs of the existing methods of performing the tasks. In 
these early meetings, the analyst is basicaIly the listener, absorbing the information 
provided. Once the analyst understands the system to some extent, he uses the next 
few meetings to seek c1arifications of the parts he does not understand. He may 
documentthe information in some manner (he may even build a model ifhe wishes), 
and he may do some brainstorming or thinking about what the system should do. 
In the final few meetings, the analyst essentiaIly explains to the c1ient what he 
understands the system should do and uses the meetings as a means of verifying if 
what he proposes the system should do is indeed consistent with the objectives of 
the c1ients. An initial draft of the SRS may be used in the final meetings. 

The informal approach to analysis is used widely and can be quite useful. The 
reason for its usefulness is that conceptual modeling-based approaches frequently 
do not model a11 aspects of the problem and are not always weIl suited for aIl 
the problems. Besides, as the SRS is to be validated and the feedback from the 
validation activity may require further analysis or specification (see Figure 3.1), 
choosing an informal approach to analysis is not very risky-the errors that may 
be introduced are not necessarily going to slip by the requirements phase. Hence 
such approaches may be the most practical approach to analysis in some situations. 

3.2.3 Structured Analysis 

The structured analysis technique [Ros77, DeM79] uses function-based decom
position while modeling the problem. It focuses on the functions performed in 
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the problem domain and the data consumed and produced by these functions. The 
structured analysis method helps ananalyst decide what type of information to 
obtain at different points in analysis, and it helps organize information so that the 
analyst is not overwhelmed by the complexity of the problem. It is a top-down 
refinement approach, which was originally called structured analysis and speciji
cation and was proposed for producing the specifications. However, we will limit 
our attention to the analysis aspect of the approach. Before we describe the ap
proach, let us the describe the data ftow diagram and data dictionary on which the 
technique relies heavily. 

Data Flow Diagrams and Data Dictionary 

Data ftow diagrams (also called data flow graphs) are commonly used during 
problem analysis. Data ftow diagrams (DFDs) are quite general and are not limited 
to problem analysis for software requirements specification. They were in use 
long before the software engineering discipline began. DFDs are very useful in 
understanding a system and can be effectively used during analysis. 

A DFD shows the ftow of data through a system. It views a system as a function that 
transforms the inputs into desired outputs. Any complex system will not perform 
tbis transformation in a "single step," and a data will typically undergo aseries 
of transformations before it becomes the output. The DFD aims to capture the 
transformations that take place within a system to the input data so that eventually 
the output data is produced. The agent that performs the transformation of data 
from one state to another is called a process (or a bubble). So, a DFD shows the 
movement of data through the different transformations or processes in the system. 
The processes are shown by named circles and data ftows are represented by named 
arrows entering or leaving the bubbles. A rectangle represents a source or sink and 
is a net originator or consumer of data. A source or a sink is typically outside the 
main system of study. An example of a DFD for a system that pays workers is 
shown in Figure 3.2. 

In this DFD there is one basic input data ftow, the weekly timesheet, which origi
nates from the source worker. The basic output is the paycheck, the sink for which 
is also the worker. In this system, first the employee's record is retrieved, using the 
employee ID, which is contained in the timesheet. From the employee record, the 
rate of payment and overtime are obtained. These rates and the regular and over
time hours (from the timesheet) are used to compute the pay. After the total pay is 
determined, taxes are deducted. To compute the tax deduction, information from 
the tax-rate file is used. The amount of tax deducted is recorded in the employee 
and company records. Finally, the paycheck is issued for the net pay. The amount 
paid is also recorded in company records. 

Some conventions used in drawing this DFD should be explained. All external files 
such as employee record, company record, and tax rates are shown as a labeled 
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Employee Record 

Overtime Rate 

Check 

B Worker 
Tax Rates 

FIGURE 3.2. DFD of a system that pays workers. 

straight line. The need for multiple data ftows by a process is represented by a 
"*,, between the data ftows. This symbol represents the AND relationship. Far 
example, if there is a "*,, between the two input data ftows A and B far a process, 
it means that A AND B are needed for the process. In the DFD, for the process 
"weekly pay" the data ftow "hours" and "pay rate" both are needed, as shown in 
the DFD. Similarly, the OR relationship is represented by a "+" between the data 
ftows. 

This DFD is an abstract description of the system for handling payment. It does 
not matter if the system is automated or manual. This diagram could very well 
be for a manual system where the computations are all done with calculators, and 
the records are physical folders and ledgers. The details and minor data paths are 
not represented in this DFD. For example, what happens if there are eITors in the 
weekly timesheet is not shown in this DFD. This is done to avoid getting bogged 
down with details while constructing a DFD for the overall system. If more details 
are desired, the DFD can be further refined. 

It should be pointed out that a DFD is not a ftowchart. A DFD represents the ftow 
of data, while a ftowchart shows the ftow of control. A DFD does not represent 
procedural information. So, while drawing a DFD, one must not get involved in 
procedural details, and procedural thinking must be consciously avoided. For ex
ample, considerations of loops and decisions must be ignored. In drawing the DFD, 
the designer has to specify the major transforms in the path of the data ftowing 
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from the input to output. How those transforms are performed is not an issue while 
drawing the data ftow graph. 

There are no detailed procedures that can be used to draw a DFD for a given 
problem. Only some directions can be provided. One way to construct a DFD 
is to start by identifying the major inputs and outputs. Minor inputs and outputs 
(like error messages) should be ignored at first. Then starting from the inputs, work 
toward the outputs, identifying the major transforms in the way. An alternative is to 
work down from the outputs toward the inputs. (Remember that it is important that 
procedural information like loops and decisions not be shown in the DFD, and the 
designer should not worry about such issues while drawing the DFD.) Following 
are some suggestions for constructing a data ftow graph [YC79, DeM79]: 

• Work your way consistently from the inputs to the outputs, or vice versa. If 
you get stuck, reverse direction. Start with a high-level data ftow graph with 
few major transforms describing the entire transformation from the inputs to 
outputs and then refine each transform with more detailed transformations. 

• Never try to show controllogic. If you find yourself thinking in terms of loops 
and decisions, it is time to stop and start again. 

• Label each arrow with proper data elements. Inputs and outputs of each 
transform should be carefully identified. 

• Make use of * and + operations and show sufficient detail in the data ftow 
graph. 

• Try drawing alternate data ftow graphs before settling on one. 

Many systems are too large for a single DFD to describe the data processing c1early. 
It is necessary that some decomposition and abstraction mechanism be used for 
such systems. DFDs can be hierarchically organized, which helps in progressively 
partitioning and analyzing large systems. Such DFDs together are called a leveled 
DFD set [DeM79]. 

A leveled DFD set has a starting DFD, which is a very abstract representation of 
the system, identifying the major inputs and outputs and the major processes in 
the system. Then each process is refined and a DFD is drawn for the process. In 
other words, a bubble in a DFD is expanded into a DFD during refinement. For the 
hierarchy to be consistent, it is important that the net inputs and outputs of a DFD 
for a process are the same as the inputs and outputs of the process in the higher
level DFD. This refinement stops if each bubble is considered to be "atomic," in 
that each bubble can be easily specified or understood. It should be pointed out that 
during refinement, though the net input and output are preserved, a refinement of 
the data might also occur. That is, a unit of data may be broken into its components 
for processing when the detailed DFD for a process is being drawn. So, as the 
processes are decomposed, data decomposition also occurs. 
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[Regulachours + Overtime.llours] * 

paYJate = 
[Hourly I daily I weekly] + 
Dollar _amount 

Employee-,name = 
Last + First + Middle_initial 

EmployeeJ:d = 

digit + digit + digit + digit 

FIGURE 3.3. Data dictionary. 

In a DFD, data flows are identified by unique names. These names are chosen so that 
they convey some meaning about what the data iso However, the precise structure of 
data flows is not specified in a DFD. The data dictionary is a repository of various 
data flows defined in a DFD. The associated data dictionary states precisely the 
structure of each data flow in the DFD. Components in the structure of a data flow 
mayaiso be specified in the data dictionary, as well as the structure of files shown in 
the DFD. To define the data structure, different notations are used. These are similar 
to the notations for regular expressions (discussed later in this chapter). Essentially, 
besides sequence or composition (represented by +) selection and iteration are 
included. Selection (represented by vertical bar "I") means one OR the other, and 
repetition (represented by "*") means one or more occurrences. In the DFD shown 
earlier, data flows for weekly timesheet are used. The data dictionary for this DFD 
is shown in Figure 3.3. 

Most of the data flows in the DFD are specified here. Some of the more obvious 
ones are not shown here. The data dictionary entry for weekly timesheet specifies 
that this data flow is composed of three basic data entities-the employee name, 
employee ID, and many occurrences of the two-tuple consisting of regular hours 
and overtime hours. The last entity represents the daily working hours of the worker. 
The data dictionary also contains entries for specifying the different elements of a 
data flow. 

Once we have constructed a DFD and its associated data dictionary, we have to 
somehow verify that they are "correct." There can be no· formal verification of 
a DFD, because what the DFD is modeling is not formally specified anywhere 
against which verification can be done. Human processes and mies of thumb must 
be used for verification. In addition to the walkthrough with the client, the analyst 
should look for common errors. Some common errors are [DeM79]: 
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• Unlabeled data ftows 

• Missing data ftows; infonnation required by a process is not available. 

• Extraneous data ftows; some infonnation is not being used in the process. 

• Consistency not maintained during refinement. 

• Missing processes 

• Contains some control infonnation 

Perhaps the most common eITor is unlabeled data ftow. If an analyst cannot label 
the data ftow, it is likely that he does not understand the purpose and structure of 
that data ftow. A good test for this type of eITor is to see that the entries in the data 
dictionary are precise for all data ftows. 

To check if there are any missing data ftows, for each process in the DFD the analyst 
should ask, "Can the process build the outputs shown from the given inputs?" 
Similarly, to check for redundant data ftows, the following question should be 
asked: "Are all the input data ftows required in the computation of the outputs?" 

In a leveled set of DFDs it is important that consistency be maintained. Consistency 
can easily be lost if new data ftows are added to the DFD during modification. If 
such changes are made, appropriate changes should be made in the parent or the 
child DFD. That is, if a new data ftow is added in a lower-Ievel DFD, it should 
also be reftected in the higher-Ievel DFDs. Similarly, if a data ftow is added in a 
higher-Ievel DFD, the DFDs for the processes affected by the change should also 
be appropriately modified. 

The DFDs should be carefully scrutinized to make sure that all the processes in the 
physical environment are shown in the DFD. It should also be ensured that none 
of the data ftows is actually carrying control infonnation. A data ftow without any 
structure or composition is a potential candidate for control infonnation. 

The Method 

Now let us return to the structured analysis method. The basic system view of this 
approach is that eachsystem (whether manual or automated, existing or concep
tual) can be viewed as a transfonnation function operating within an environment 
that takes some inputs from the environment and produces some outputs for the 
environment. And as the overall transfonnation function of the entire system may 
be too complex to comprehend as a single function, the function should be parti
tioned into subfunctions that together fonn the overall function. The subfunctions 
can be further partitioned and the process repeated until we reach a stage where 
each functiön can be comprehended easily. And the basic approach used to uncover 
the functions being perfonned in the system (or the functions that are part of the 
overall system function) is to track the data as it ftows through the system-from 
the input to the output. It is believed that in any complex system the data trans
fonnation from the input to the output will not occur in a single step; rather the 
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data will be transformed from the input to the output in aseries of transformations 
starting from the input and culminating in the desired output. By understanding the 
"states" the data is in as it goes through the transformation series, the functions in 
the system can be identified; each transformation of the data in the transformation 
series is performed by a transformation function. Hence, by tracking as the data 
flows through the system, the various functions being performed by a system can 
be identified. As this approach can be modeled easily by data flow diagrams, DFDs 
are used heavily in this method. 

The first step in this method is to study the "physical environment." During this, 
a DFD of the current nonautomated (or partially automated) system is drawn, 
showing the input and output data flows of the system, how the data flows through 
the system, and what processes are operating on the data. This DFD might contain 
specific names for data flows and processes, as used in the physical environment. 
For example, names of departments, persons, local procedures, and organizational 
files can occur in the DFD for the physical environment. While drawing the DFD 
for the physical environment, an analyst has to interact with the users to determine 
the overall process from the point of view of the data. This step is considered 
complete when the entire physical data flow diagram has been described and the 
user has accepted it as a true representation of the operation of the current system. 
The step may start with a context diagram in which the entire system is treated as 
a single process and all its inputs, outputs, sinks, and sources are identified and 
shown. 

The basic purpose of analyzing the current system is to obtain a logical DFD for 
the system, where each data flow and each process is a logical entity or operation, 
rather than an actual name. Drawing a DFD for the physical system is only to 
provide a reasonable starting point for drawing the logical DFD. Hence, the next 
step in the analysis is to draw the logical equivalents of the DFD for the physi
cal system. During this step, the DFD of the physical environment is taken and 
all specific physical data flows are represented by their logical equivalents (for 
example, file 12.3.2 may be replaced by the employee salary file). Similarly, the 
bubbles for physical processes are replaced with logical processes. For example, 
a bubble named "ToJohn's_office" in the physical system might be replaced by 
"issue checks" in the logical equivalent. Bubbles that do not transform the data in 
any form are deleted from the DFD. This phase also ends when the DFD has been 
verified by the user. 

In the first two steps, the current system is modeled. The next step is to develop a 
logical model of the new system after the changes have been incorporated, and a 
DFD is drawn to show how data will flow in the new system. During this step the 
analyst works in the logical mode, specifying only what needs to be done, not how 
it will be acc6mplished. No separation between the automated and nonautomated 
processes is made. 
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No general mIes are provided for constructing the DFD for the new system. The 
new system still does not exist; it has to be invented. Consequently, what will be 
the data flows and major processes in this new system must be determined by the 
analyst, based on bis experience and vision of the new system. No mIes can be 
provided for this decision. However, before tbis can be done, the boundaries of 
change have to be identified in the logical DFD for the existing system. This DFD 
models the entire system, and only parts of it may be modified in the new system. 
Based on the goals of the clients and a clear concept about what the client wants to 
change, the boundaries of change have to be established in the logical DFD. The 
DFD for the new system will replace only that part of the existing DFD within this 
boundary. The inputs and outputs ofthe new DFD should be the same as the inputs 
and outputs for the DFD within the boundary. 

The next step is to establish the man-macbine boundary by specifying what will 
be automated and what will remain manual in the DFD for the new system. Note 
that even though some processes are not automated, they could be quite different 
from the processes in the original system, as even the manual operations may be 
performed differently in the new system. Often there is not just one option for 
the man-machine boundary. Different possibilities may exist depending on what is 
automated and the degree of automation. The analyst should explore and present 
the different possibilities. 

The next two steps are evaluating the different options and then packaging or 
presenting the specifications. 

For drawing a DFD, a top-down approach is suggested in the structured analysis 
method. In the structured analysis method, a DFD is constructed from scratch 
when the DFD for the physical system is being drawn and when the DFD for the 
new system is being drawn. The second step largely performs transformations on 
the physical DFD. Drawing a DFD starts with a top-level DFD called the context 
diagram, which lists all the major inputs and outputs for the system. This diagram 
is then refined into adescription of the different parts of the DFD showing more 
details. This resuIts in a leveled set of DFDs. As pointed out earlier, during this 
refinement, the analyst has to make sure consistency is maintained and that net 
input and output are preserved during refinement. 

Clearly, the stmctured analysis provides methods for organizing and representing 
information about systems. It also provides guidelines for checking the accuracy 
of the information. Hence, for understanding and analyzing an existing system, 
this method provides useful tools. However, most of the guidelines given in the 
structured analysis are only applicable in the first two steps, when the DFD for a 
current system is to be constructed. For analyzing the target system and constructing 
the DFD or the data dictionary for the new system to be built (done in step three), this 
technique does not provide much guidance. Of course, the study and understanding 
of the existing' system will help the analyst in this job, but there is no direct help 
from the method of structured analysis. 
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Supplies 

Menu 

Payment 

Order for Supplies 
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L-______ ~---------~ 

FIGURE 3.4. Context diagram for the restaurant. 

An Example 

A restaurant owner feels that some amount of automation will help make her 
business more efficient. She also believes that an automated system might be an 
added attraction for the customers. So she wants to automate the operation of her 
restaurant as much as possible. Here we will perform the analysis for this problem. 
Details regarding interviews, questionnaires, or how the information was extracted 
are not described. First let us identify the different parties involved. 

Client: The restaurant owner 

Potential Users: Waiters, cash register operator 

The context diagram for the restaurant is shown in Figure 3.4. The inputs and 
outputs of the restaurant are shown in this diagram. However, no details about 
the functioning of the restaurant are given here. Using this as a starting point, a 
logical DFD of the physical system is given in Figure 3.5 (the physical DFD was 
avoided for this as the logical DFD is similar to the physical and there were no 
special names for the data or the processes in the physical system). Observing the 
operation of the restaurant and interviewing the owner were the basic means of 
collecting raw information for this DFD. 

Now we must draw a DFD that models the new system to be built. After many 
meetings and discussions with the restaurant owner, the following goals for the 
new system were established: 

• Automate much of the order processing and billing. 

• Automate accounting. 
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Supplies Register 

Supply ~------~ 
Record 

FIGURE 3.5. DFD for the existing restaurant system 

• Make supply ordering more accurate so that leftovers at the end of the day 
are minimized and the orders that cannot be satisfied due to nonavailability 
are also minimized. This was currently being done without a careful analysis 
of sales. 

• The owner also suspects that the staff might be stealingJeating some food! 
supplies. She wants the new system to help detect and reduce this. 

• The owner would also like to have statistics about sales of different items. 

With these goals, we can define the boundaries for change in the DFD.1t is clear that 
the new system will affect most aspects of the previous system, with the exception 
of making dishes. So, except for that process, the remaining parts of the old system 
all fall within our boundary of change. The DFD for the new system is shown 
in Figure 3.6. Note that aIthough taking orders might remain manual in the new 
system, the process might change, because the waiter might need to fill in codes 
for menu items. That is why it is also within the boundary of change. 

The DFD is largely self-explanatory. The major files in the system are: Supplies 
file, Accounting file, Orders file, and the Menu. Some new processes that did not 
have equiv'alents earlier have been included in the system. These are "check for 
discrepancy," "accounting reports," and "statistics." Note that the processes are 
consistent in that the inputs given to them are sufficient to produce the outputs. For 
example, "checking for discrepancy" requires the following information to produce 
the report: total supplies received (obtained from the supplies file), supplies left at 



www.manaraa.com

Man-Machine 

\/Boundary 

\ 
\ 

\ 
\ 

" " '-

3.2. Problem Analysis 97 

Account File 

Owner 

Check 

FIGURE 3.6. The DFD for the new restaurant system. 

the end of the day, total orders plaeed by the customers (from the orders file), and 
the consumption rate .for each menu item (from the menu). All these are shown as 
inputs to the process. Supplies required for the next day are assessed from the total 
orders plaeed in the day and the orders that eould not be satisfied due to lack of 
supplies (both kept in the order file). To see clearly if the information is sufficient 
for the different proeesses, the structure and exact contents of eaeh of the data flows 
has to be specified. The data dictionary for this is given in Figure 3.7. 

The definitions cf the different data flows and files are self-explanatory. Onee 
this DFD and the data dictionary have been approved by the restaurant owner, the 
activity of understanding the problem is complete. After talking with the restaurant 
owner the man-machine boundary was also defined (it is shown in the DFD). Now 
remains such tasks as determining the detailed requirements of each of the bubbles 
shown in the DFD, determining the nonfunctional requirements, deciding codes 
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Suppliedile = 

[date + 
[itemJlo + quantity + cost]* ]* 

Orders_file 
[date + 
[menu_itemJlo + quantity + status]* ]* 

status = satisfied I unsatisfied 

order = 
[menuJ.temJlo + quantity]* 

menu = 
[menu_itemJlo + name + price + supplies_used]* 

supplies_used = 

[supplyJ.tem_no + quantity]* 

bill = 
[name + quantity + price]* + 
totaLprice + 
sales_tax + 
service_charge + 
grand_total 

discrepancy Jeport = 

[supply_itemJlo + amLordered + amtJeft + amLconsumed + descr]* 

FIGURE 3.7. Data dictianary far the restaurant. 

for the items in the menu and in the supply list. Further refinement for some of 
the bubbles might be needed. For example, it has to be determined what sort of 
accounting reports or statistics are needed and what their formats should be. Once 
these are done, the analysis is complete and the requirements can then be compiled 
in a requirements specification document. 

3.2.4 Object-Oriented Modeling 

As mentioned earlier, while analyzing the problem domain, the problem can be 
partitioned with respect to its functionality or with respect to objects. Object
oriented modeling (or object-oriented analysis) uses the latter approach. During 
analysis, an object represents some entity or some concept in the problem domain. 
An object contains some state information and provides some services to entities 
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outside the objects. The state ofthe object can be accessed or modified only through 
the services it provides. 

In object-oriented modeling, a system is viewed as a set of objects. The objects in
teract with each other through the services they provide. Some objects also interact 
with the users through their services such that the users get the desired services. 
Hence, the goal of modeling is to identify the objects that exist in the problem do
main, define the objects by specifying what state information they encapsulate and 
what services they provide, and identify relationships that ex ist between objects, 
such that the overall model is such that it supports the desired user services. Such 
a model of a system is called its object model. 

Object-oriented modeling and systems have been getting a lot of attention in the 
recent past. The basic reason for this is the belief that object-oriented systems are 
going to be easier to build and maintain. It is also believed that transition from 
object-oriented analysis to object-oriented design (and implementation) will be 
easy, and that object-oriented analysis is more immune to change because objects 
are more stable than functions. That is, in a problem domain, objects are likely 
to stay the same even if the exact nature of the problem changes, while this is 
not the case with function-oriented modeling. Many approaches to object-oriented 
modeling and design have been proposed [CY90, Bo094, Fir93, EKW92]. Goals 
of many of these techniques regarding what to produce are quite similar, and their 
approaches and notations are also similar. Abrief comparison of these techniques 
is given in [EJW95]. Here, we briefty describe the approach proposed in [CY90], 
though the notation we use is similar to the one proposed in [R+91]. 

Basic Concepts and Notation 

In understanding or modeling a system using an object modeling technique, the 
system is viewed as consisting of objects. Each object has certain attributes, which 
together define the object. Separation of an object from its attributes is a natural 
method that we use for understanding systems (a man is separate from his attributes 
of height, weight, etc.). In object-oriented systems, attributes hold the state (or 
define the state) of an object. An attribute is a pure data value (like integer, string, 
etc.), not an object. 

Objects of similar type are grouped together to form an object dass (or just dass). 
An object dass is essentially a type definition, which defines the state space of 
objects of its type and the operations (and their semantics) that can be applied 
to objects of that type. Formation of dass es is also a general technique used by 
humans for understanding systems and differentiating between dasses (e.g., an 
apple tree is an instance of the dass of trees, and the dass of trees is different from 
the dass of birds). 

An object also provides so me services or operations. These services are the only 
means by which the state of the object can be modified or viewed from outside. 
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For operating a service, a message is sent to the object for that service. In general, 
these services are defined for a class and are provided for each object of that 
class. Encapsulating services and attributes together in an object is one of the 
main features that distinguishes an object modeling approach from data modeling 
approaches, like the ER diagrams (discussed later). 

Object diagrams represent the object model graphically using a precise notation. 
In an object diagram, an object class is represented as a portrait-style rectangle 
divided into three parts. The top part contains the name of the class. The middle 
part lists the attributes that objects of this class possess. And the third part lists the 
services provided by objects of this class 

Through the concepts discussed so far we can model objects or classes. But the 
relationship between classes and objects cannot be modeled. And entities and 
classes are related in the real world (e.g., a house object contains many room 
objects, or the house class is a special form of the general accommodation class). 
To model these, two types of structures are used: generalization-specialization 
and aggregation (also called assembly). The generalization-specialization structure 
can be used by a class to inherit all or some attributes and services of a general 
class and add more attributes and services. This structure is modeled in object
oriented modeling through inheritance. By using a general class and inheriting 
some of its attributes and services and adding more, one can create a class that 
is a specialized version of the general class. And many specialized classes can be 
created from a general class, giving us class hierarchies. The aggregation structure 
models the whole-part relationship. An object may be composed of many objects; 
this is modeled through the aggregation structure. The representation of these in a 
class diagram is shown in Figure 3.8. 

In addition to these, instances of a class may be related to objects of some other 
class. For example, an object of the class Employer may be related to many objects 
of the class Employee. This relationship between objects also has to be captured if 

Superclass Container 
Class 

~ y 
I 1 1 1 

Subclass 1 Subclass 2 Part 1 Part 2 

... 

FIGURE 3.8. Class structures. 
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a system is to be modeled properly. This is captured in object modeling through as
sociations. An association is shown in the object diagram by having a line between 
the two dasses. The multiplicity of an association specifies how many instances of 
one dass may relate to an instances of the other dass through this association. An 
association between two dasses can be one-to-one (Le., one instance of one dass 
is related to exact1y one instance of the other dass), one-to-many, or some other 
special cases. Multiplicity is specified by having a solid ball (.) on the line adjacent 
to the dass representing zero or more instances of the dass may be related to an 
instance of the other dass. The relationship may be necessary, that is, an instance 
cannot exist without being related to another object by this relationship, or it may 
be optional. In the object diagram, a hollow cirde on the line next to the dass 
implies that the participation of an object of that dass in the association is optional 
(Le., zero or one). 

We now have the basic components of an object-oriented model: objects, dasses 
(for dassification), inheritance (for modeling generalization-specialization), and 
aggregation (for modeling whole-part relationship), and associations (for modeling 
relationships between instances). Using these, a system can be modeled. 

Let us illustrate the use of some of these relationships and their representation 
through the use of an example. Suppose a system is being contemplated for a 
drugstore that will compute the total sales of the drugstore along with the total sales 
of different chemists that man the drugstore. The drugs are of two major types-off
the-shelf and prescription drugs. The system is to provide help in procuring drugs 
when out of stock, removing them when expired, replenishing the off-the-shelf 
drugs when needed, etc. A model of the system is shown in Figure 3.9. 

Let us briefly explain this object diagram. It has five dasses of objects, each with 
a defined name, some attributes, and services. For example, an object of dass 
Chemist has the attributes Name, Registration number, and Address. It has one 
service ChemistSalesO, which computes the total sales by this chemist. The Drug
Store dass is an aggregation of the dass Medicine and the dass Chemist (rep
resenting that a drugstore is composed of medicines and chemists). A Medicine 
may either be Off-the-shelf or Prescription. The object dass Medicine has 
some attributes like Name, Quantity in stock, and Expiry-date, and has services 
like ExpiredO (to list the expired medicines), OutOfStockO (to list medicines that 
are no longer in stock), etc. These attributes and services are inherited by the two 
specialized dasses. In addition to these, the Off-the-shelf dass has another 
attribute qty-on-shelf, representing how many have been put on the shelf and have 
services related to shelf stock. On the other hand, the Prescription dass has 
Refrigeration-needs and Warnings as specialized attributes and services related 
to them. There are various associations in this model. For example, there is an 
association between Sale and Medicine. This association is one to many, that 
is, one sale CQuid be of many medicines. Similarly, Drug-Store is associated to 
Medicine and Chemist, and Chemist is associated with Sale. 
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FIGURE 3.9. Model of a drugstore. 

Performing Analysis 

Now that we know what an object model of a system consists of, the next question 
that arises is how to obtain the object model for a system. In other words, how do 
we actually perform the analysis? As mentioned earlier, because the input to the 
analysis activity (or the requirements activity) is informal and fuzzy and the output 
is formal, there can be no "algorithm" to perform the analysis or generate the SRS. 
Hence, any method for performing analysis is, at best, a set of guidelines that have 
been found to be useful in practice. Here we briefty discuss the set of guidelines 
given in [CY90], according to which the major steps in the analysis are: 

• Identifying objects 

• Identifying structures 

• Identifying attributes 

• Identifying associations 

• Defining services 
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Identifying Objects. An object during analysis is an encapsulation of attributes 
on which it provides some exclusive services [CY90). It represents something in 
the problem space. It has been argued that though things like interfaces between 
components, functions, etc. are generally volatile and change with changing needs, 
objects are quite stable in a problem domain. 

To identify analysis objects, start by looking at the problem space and its descrip
tion. Obtain a brief summary of the problem space. In the summary and other 
descriptions of the problem space, consider the nouns. Frequently, nouns repre
sent entities in the problem space which will get modeled as objects. Structures, 
devices, events remembered, roles played, locations, organizational units, etc. are 
good candidates to consider. A candidate should be included as an object if the 
system needs to remember something about the object, the system needs some 
services from the object to perform its own services, and the object has multiple 
attributes (i.e., it is a high-level object encapsulating some attributes). If the system 
does not need to keep information about some real-world entity or does not need 
any services from the entity, it should not be considered as an object for modeling. 
Similarly, carefully consider objects that have only one attribute; such objects can 
frequently be included as attributes in other objects. 

Identifying Structures. Structures represent the hierarchies that exist between ob
ject classes. All complex systems have hierarchies. In object modeling, the hier
archies are defined between classes that capture generalization-specialization and 
whole-part relationships. In generalization-specialization, the class being refined is 
generally called the superclass and the specialized class is called the subclass. The 
attributes and services of the superclass are inherited by the subclasses. The sub
classes can add more attributes and services (or rede fine the attributes and services 
of the superclass) to specialize. For example, a general class of reading material 
may have the attributes of title and publisher. Then there may be subclasses books, 
magazines, and newspapers. The class book, besides the inherited attributes of 
reading-material, may have the attributes of ISBN number and author name that 
are specific to the class of books. Similarly, the magazine may have the attributes 
of frequency of publication, and its scope (political, humor, fashion, etc.). An as
sembly structure is used to model an object as a collection of components. For 
example, a library is composed of books, magazines, and audio-visual objects. 

To identify the classification structure, consider the objects that have been identified 
as a generalization and see if there are objects in the problem space that can be 
considered as specializations of this. The specializations should be meaningful for 
the problem domain. For example, if the problem domain does not care about the 
material used to make some objects, there is no point in specializing the objects 
based on the material they are made of. Similarly, consider objects as specializations 
and see ifthere are other objects that have similar attributes. If so, see if a generalized 
class can be identified of which these are specializations. Onee again, the structure 
obtained mustnaturally reflect the hierarchy in the problem domain; it should not 
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be "extracted" simply because some objects have some attributes with the same 
names. 

To identify assembly structure, a similar approach is taken. Consider each object 
as an assembly and identify its parts or components. See if the system needs to 
keep track of the parts. If it does, then the parts must be reflected as objects; if not, 
then the parts should not be modeled as separate objects. Then consider each object 
as a part and see to which object it can be considered as belonging. Once again, 
this separation is maintained only if the system needs it. As before, the structures 
identified should naturally reflect the hierarchy in the problem domain and should 
not be "forced." 

Identifying Attributes. Attributes add detail about the object and are the repositories 
of data for the object. For example, for a person object c1ass, the attributes could 
be the name, sex, and address. The data stored in forms of values of attributes 
are hidden from outside the objects and are accessed and manipulated only by the 
service functions for that object. Which attributes should be used to define an object 
depend on the problem and what needs to be done. For example, while modeling a 
hospital system, for the object person attributes of height, weight, and date of birth 
may be needed, though these may not be needed for a database for a county that 
keeps track of populations in various neighborhoods. 

To identify attributes, consider each object and see which attributes for the object 
are needed by the problem domain. This is frequently a simple task. Then position 
each attribute properly using the structures; if the attribute is a common attribute, 
it should be placed in the superc1ass, while if it is specific to a specialized object it 
should be placed with the subc1ass. While identifying attributes, new objects may 
also get defined or old objects may disappear (e.g., if you find that an object really 
is an attribute of another object). 

Identifying Associations. Associations capture the relationship between instances 
of various c1asses. For example, an instance of the c1ass company may be related 
to an instance of the c1ass person by an "employs" relationship. Note that there is 
no relationship between the c1ass company and the c1ass person; their instances are 
related. This is similar to what is done in ER modeling. And like in ER modeling, an 
instance connection may be of 1: 1 type representing that one instance of this type 
is related to exact1y one instance of another c1ass. Or it could be l:M, indicating 
that one instance of this c1ass may be related to many instances of the other c1ass. 
As indicated earlier, the multiplicity of an association is represented by a solid ball 
(e) and the optional nature by a circ1e. There are M:M connections, and there are 
sometimes multiway connections, but these are not very common. The associations 
between objects are derived from the problem domain directly once the objects 
have been identified. An association may have attributes of its own; these are 
typically attributes that do not naturally belong to either object. Though in many 
situations they can be "forced" to belong to one of the two objects without losing 
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any information, it should not be done unless the attribute naturally belongs to the 
object. 

Defining Services. An object performs a set of predefined services. A service is 
performed when the object receives a message for it. Services really provide the 
active element in object-oriented modeling; they are the agent of state change 
or "processing." It is through the services that desired functional services can 
be provided by a system. To identify services, first identify the occur services, 
which are needed to create, destroy, and maintain the instances of the object. These 
services are generally not shown in the object diagrams. Other services depend on 
the type of services the system is providing. A method for identifying the services 
is to define the system states and then in each state list the extern al events and 
required responses. For each of these, identify what services the different objects 
should possess. 

The object diagram clearly gets large and complex for large systems. To handle 
the complexity, it is suggested to have a subject layer in which the object model 
is partitioned into various subjects, with each subject containing some part of the 
diagram. Typically, a subject will contain many related objects. 

An Example 

Let us consider the example of the restaurant, whose structured analysis was per
formed earlier. By stating the goals of the system (i.e., automate the bill generation 
for orders given by customers, obtain sale statistics, determine discrepancy be
tween supplies taken and supplies consumed, automate ordering of supplies) and 
studying the problem domain (i.e., the restaurant with customer, supplier, menu, 
etc.), we can clearly see that there are at least the following objects: Restaurant, 
Restaurant owner, Bill,Menu, CustomerOrder, Supplier, SupplyOrder, 
Supply handling (unit), and Dishes. Each of these entities plays an important 
role in the system. We consider this as the starting point and the initial object layer. 
By looking at the objectives and scope of the system, we find that no information 
about the Supplier or the Operator needs to be maintained in the system. Hence, 
they need not be modeled in the system as objects. For the same reason, entities 
like Dishes and Restaurant owner are not modeled as objects. The initial object 
layer is shown in Figure 3.10. Note that this is the initiallayer, which will further 
evolve, and new objects may get added and some of these may eventually not be 
needed. 

Now let us try to identify structure between these classes. Clearly, a Restaurant 
is an aggregation of Menu and Supply handling. As dishes, operator, etc. are not 
considered objects, they do not show up as components of Restaurant. Further, 
a Menu is an aggregation of many MenuItems. This requires us to add the object 
Menultem in the object layer. Similarly, the SupplyOrder is an aggregation of 
(many) SupplyItems. This also requires us to add Supplyltem as a new object 
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Supply Handling SupplyOrder 

Restaurant EJEl 
FIGDRE 3.10. Initial object layer for the restaurant example. 

to the object layer. Furthermore, the association between SupplyOrder and Sup
plyltem has an attribute quantity, reftecting the quantity ordered for a particular 
item by an order. There is no generalization-specialization hierarchy in this. 

Many attributes of various items can be directly identified. A Menultem has at
tributes of Number, Name, Price, Supplies used (i.e., which supplies it uses and 
quantity; this is needed to detect discrepancies in consumption and supplies used). 
Similarly, Supplyltem has Item name and Unit price as attributes. 

With this, we are ready to identify relationships between objects. The Supply 
handling (unit) is related to (many) SupplyOrder. Similarly, an Order (by a 
customer) is related to many Menultem. Furthermore, this association has an at
tribute of its own-quantity. The quantity of the particular MenuItem ordered in 
a particular Order isnaturally a property of the association between the specific 
Order and the specific Menultem. 

Finally, we have to identify the service layer. Keeping our basic services of the 
system in mind (generate sale statistics, bill, discrepancy report, sale order), we 
define services of various objects. Supply handling object has the services Cred
itSupplyO (used to record the receipt of supplies), DebitSupplyO (used to record 
the supplies taken out), and PlaceOrderO (to place order of supplies). For Sup
plyOrder, one service is identified-ProduceCheckO to produce the check for the 
particular order. The object Order has one service-ProduceBillO-to produce the 
bill for the particular order. Handling the bill as essentially something generated 
for each order, we remove the object Bill from the object layer. The main object 
Restaurant has the services SaleStatO to generate the sale statistics for which it 
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will require all order information (which it will obtain through its association with 
Order).1t also has the service DiscrepancyO to generate a discrepancy report. For 
this, it will need to find out what items have been consumed their quantity, and 
how much supply was debited. The former it can obtain from all the orders and the 
latter from Supply handling. The final object diagram is shown in Figure 3.11. 

3.2.5 Other Modeling Approaches 

Many other languages and related processors have been proposed for requirement 
analysis and specification. Most of these are not general and cater to some ap
plication area. Here we briefly discuss some of the techniques. These approaches 
typically are designed for both analysis and specification; they provide means for 
organizing information and producing reports. 

Before we describe the languages, a word of caution is in order. All these lan
guages provide means for organizing and specifying requirements, but they do not 
provide much help in determining the requirements. This is not a shortcoming of 
the languages but rather is a feature of the requirement specification problem. Be
cause in the beginning the requirements are in the minds ofthe people, no language 
or automated tool can uncover them. Determining the requirements is necessarily 
a human process. These languages help in writing the requirements in a manner 
useful in later activities. The processors for the languages are often capable of 
performing cross checking and some amount of consistency checking. 

SADT 

Structured analysis and design technique (SADT) [Ros77, RS77] is designed for 
information processing systems. 1t has a graphicallanguage based on the concept 
of blueprints used in civil engineering. A model in SADT is a hierarchy of dia
grams supporting a top-down approach for analysis and specification. Embedded 
in the diagrams is text in naturallanguage. Hence, the specification language is a 
combination of a precisely defined graphicallanguage and a naturallanguage. 

A diagram in an SADT model is either an activity diagram or a data diagram. Each 
diagram consists of boxes and arrows. Boxes represent parts of a whole and arrows 
represent the interfaces between different parts. Each diagram may be accompanied 
by some text. 

The hierarchy of diagrams starts with the context diagram, which is the most 
abstract description of the problem. The problem is then refined into subproblems 
that are shown as another diagram. Each of the subproblems in this diagram can 
be further refined by constructing its diagram. Each diagram represents a limited 
amount of detail about a well-defined subproblem of a higher-level diagram. As 
the refinement proceeds, our understanding of the problem becomes more detailed 



www.manaraa.com

108 3. Software Requirements Analysis and Specification 

Supply Handling SupplyOrder Supplyltem 

ItemNarne 
Unit Price 

--tI A 
v 

CreditSupply ( ) I I 
DebitSupply ( ) I Quantity I 
PlaceOrder ( ) 
ProduceCheck ( ) ProduceCheck ( ) 

Restaurant 

0-
SaleStat () 
Descrepancy ( ) 

Menu Menultern 

Itern Narne 
Itern Nurnber 

A Price 
v Supplies Used 

Order 

YI 
ProduceBili ( ) I 

I Quantity 

FIGURE 3.11. Object model for the restaurant. 

and accurate. This method of refinement exposes the details about the problem 
gradually, which helps the analyst manage the analysis activity. 

Again, the basic components of the SADT diagram are boxes and arrows entering 
or leaving the boxes. The idea behind the diagrams is similar to that of a DFD, 
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except that the notation is different and there are precise rules for interpretation of 
arrows, depending on which side of the box they enter. Furthermore, loops might 
exist in diagrams in SADT, while loops are rare in DFDs. 

A box represents a transformation (like a bubble does in the DFD). The arrows 
entering a box from the left represent things that will be transformed. What these 
are transformed into are shown by arrows leaving from the right. Arrows entering 
from the top of a box represent some sort of control that affects the transformation 
of the box. The control arrows are meant to ensure that the transformation is 
applied only when circumstances are appropriate or conditions are correct. Arrows 
entering from the bottom of a box represent mechanisms needed to perform the 
transformation. The boxes are labeled by "verbs" representing happenings, while 
the arrows are labeled by "nouns" representing things. 

When a part of the diagram is refined into another diagram, the overall arrows in 
the parent diagram should be preserved in the refinement. That is, in general, the 
arrows going in and coming out of a diagram is a refinement of a box in a parent 
diagram should be the same as the arrows going in and coming out of the box in 
the parent diagram. This is similar to the consistency requirement imposed on a 
leveled set of DFDs in the structured analysis approach. 

Note that just like in DFD, the refinement does not produce a design. The analysis 
stays in the problem domain, and during refinement we try to find the different 
parts of the problem. The solution to the problem is not an issue during analysis. 

As an example consider the system that pays workers described by the DFD in 
Figure 3.2. The context diagram for this is shown in Figure 3.12, and the diagram 
after one refinement is shown in Figure 3.13. 

Timesheet 

Employee 
Record 

Timesheet 
Validity 
Criteria 

Tax 
Deduction 

Rules 

Process Weekly Pay 

Check 

Payment 
Records 

o I--____ Tax Deduction 
L-________ ...l Record 

FIGURE 3.12. Context diagram for the pay system. 



www.manaraa.com

110 3. Software Requirements Analysis and Specification 

Timesheet 
Validity 
Criteria 

c1 

Timesheet Validate 
--......... --/ Timesheet 

Employee Record 
Determine 

Pay 2 

Tax Deduction 
Rules 

c2 

Taxes 3 

Tax Deduction 
1-------°1 

Record 

Make 

02 Check 03 Payment 
Record 

FIGURE 3.13. Refinement of the diagram. 

In the context diagram, different inputs and outputs are identified. Note that time
sheet validity criteria and tax deduction rules are identified as control inputs. This 
overall problem is broken into subproblems during refinement. During the refine
ment four different boxes are identified. The overall inputs and outputs remain the 
same (as they should). Note that the output of "validate timesheet" is the control 
input to the "determine pay" box. The boxes, inputs, and outputs in the refinement 
have been given numbers, according to the convention of the SADT diagrams. 

PSLIPSA 

The Problem Statement Language (PSL) [TH77] is designed to specify the require
ments of information systems. It is a textual language, as opposed to many other 
techniques that are a combination of graphical and textual. Problem Statement 
Analyzer (PSA) is the processor that processes the requirements stated in PSL; it 
produces some useful reports and analyses. 

In PSL, a system contains a set of objects, each object having properties and defined 
relationships. The major parts of a system description are system input/output flow, 
system structure, and data structure. The system input/output flow deals with the 
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interaction of the system with the environment and specifies all the inputs received 
and all the outputs produced. System structure defines the hierarchies among the 
different objects, and data structure defines the relationships among the data used 
within the system. 

PSA operates on the database of information collected from the PSL description 
of the requirements. A number of reports can be produced, including the data 
dictionary, data flow diagrams, a database modification report, summary reports, 
reference reports, and analysis reports. The data-base modification report lists all 
changes made to the database since the last report. Summary reports produce an 
overview of all the objects defined and their properties. Analysis reports produce 
information about inputs and outputs and any consistency problems that have been 
uncovered. 

The PSL method is fundamentally the same as the structured analysis method. The 
problem description revolves around process descriptions. A process is similar to 
a bubble in a DFD or a box in the SADT diagram. In PSL, a process is described 
textually. Just like in DFD, the PSL specification identifies the different inputs 
and outputs. In addition, for a hierarchical decomposition, a PSL description of a 
process specifies its subparts (children) and the process of which it is apart (the 
parent). A PSL description also specifies the existing procedure used in the process 
and the dependencies between an output and different inputs. An example of the 
process description for the overall procedure of the pay-processing system, whose 
context diagram was shown in Figure 3.12 is given in Figure 3.14. The specification 
format used is similar to the one described in [TH77]. 

Refinement can proceed by providing process specifications for the subparts iden
tified in the process description. As we can see, the basic information in a PSL 
description is similar to the information in a DFD or an SADT diagram. The ap
proach of top-down refinement based on refining processes is also similar to other 
methods. 

RSLlREVS 

The requirements statement language (RSL) [Alf77] was specifically designed for 
specifying complex real-time control systems. The requirement engineering vali
dation system (REVS) is a set of tools to support the development of requirements 
in RSL. REVS consists of a translator for the requirements written in RSL, a cen
tralized database in which the translator deposits information, and a set of tools for 
processing the information in the database. 

RSL uses a flow-oriented approach to specify real-time systems. For each flow, the 
stimulus and the final response are specified. In between, the major processing steps 
are specified. Flows can be specified in RSL as requirement networks (R-NETS), 
which can be' represented graphically or textually. REVS contains tools to help 
specify flow paths and to check completeness and consistency of information, as 
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PROCESS 
Pay-processing 

DESCRIPTION 
This process perfonns actions for paying workers based on 
their weekly timesheets. 

GENERATES 
Pay check, payment report, tax deduction report 

RECEIVES 
Weekly timesheet, employee record, tax deduction rules. 

SUBPARTS ARE 
validate_timesheet, detennine_pay, deducUaxes, make_payment 

PARTOF 
Worker management system 

DERlVES 
totaLpay 

USING 
timesheet, daily Jate and overtimeJate 
(from employeeJecord) 

tax_deduction 
USING 

tax_deductionJUles, totaLpay 
paymenLcheck 

USING 
totaLpay, tax_deduction 

PROCEDURE 
1. Check validity of timesheet 
2. Compute total pay 
3. Deduct taxes 
4. Generate paycheck 

HAPPENS 
Once every week 

FIGURE 3.14. Process description for the top-level process. 

weIl as a simulation package. It also has the ability to generate reports and specific 
analyses. 

Unlike other approaches, there is control infonnation specified in RSL. This is 
because RSL is primarily designed for real-time control systems, where control 
infonnation is an essential component for completely describing system require
ments. 
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Entity-Relationship Modeling 

If the application is primarily a database application, the entity-relationship (ER) 
approach can be used effectively for modeling some parts of the problem. The 
ER modeling approach was proposed in the middle 1970s [Che76] to help design 
information systems and is still widely used for designing databases. 

The main focus of ER modeling is the data items in the system and the relationships 
between them. It aims to create a conceptual schema (also called the ER model) 
for the data from the user's perspective. The model thus created is a high-level data 
model that is independent of any database model. The schema can later be used dur
ing the development of the database, and there are methods that use the ER models 
to design databases for the different database models (relational, network, hierar
chical). The ER models are frequently represented as entity-relationship diagrams 
(ER diagrams), though the model can also be represented in more mathematical 
forms. 

The modeling primitives are similar to the primitives in object-oriented modeling, 
and the notation in ER diagrams is similar to the notation used in object diagrams. 
In fact, ER modeIing represents one of the greatest inftuences on object-oriented 
modeling. Here we briefty describe the ER diagram notation and the ER modeling 
approach; the discussion is based on [Che76, EN89]. 

The basic units in an ER model are entities, their attributes, entity types, and 
relationships between the entity types. An entity, like an object in object-oriented 
modeling, represents something in the real world that may have a physical existence 
(e.g., person, car) or may only have a conceptual existence (e.g., a course, color, 
profession). An entity type is like a c1ass in object-oriented modeling; it represents 
the general structures of the entities that belong to that type. An entity type has a set 
of attributes that describe the structure of the entities of that type. For example, the 
entity type Professor has attributes like name, office number, department to which 
he belongs, etc. An attribute may be a composite attribute consisting of parts that 
have a meaning of their own. For example, the name attribute can be considered a 
composite attribute comprising last name, first name, and middle initial. The ER 
model deals with entity types rather than actual entities. 

The entity types represent the various types of entities that exist in the problem and 
the structure of these entities. However, entities in a system do not exist in isolation, 
and there are associations between entities. This is captured by relationship types 
in the ER model. The most common relationship is a binary relationship, which 
specifies an association between entities of two types. A binary relation is of degree 
2. Temary associations (i.e., with degree 3) are also found, but higher-order associ
ations are generally not found in applications. An instance of a binary relationship 
type represents an association of two entities, belonging to each of the two types 
taking part in the relationship. Relationship types mayaIso have attributes. 
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FIGURE 3.15. ER schema für the cümpany database. 

Relationships frequently have some constraints on them. The cardinality ratio 
constraint specifies the number of relationship instances an entity can participate 
in. The three types of cardinality ratios for binary relationships are 1: 1, l:N, and 
N:M representing one-to-one, one-to-many, and many-to-many associations, re
spectively. The participation constraint specifies whether the participation of a 
type is total or partial. In a total participation, each entity of an entity type belongs 
to at least one instance of the relationship. In the partial case, some entities may 
not be related to any entity of the other type. 

The ER diagrams graphically represent the conceptual schema, in which the struc
ture of the entity types, the relationship between entities, and constraints on rela
tionships, are allrepresented. We illustrate the ER modeling approach by giving 
an example of an ER model of a company database (adapted from [EN89]). We 
don 't discuss the evolution of this schema; we give only the final schema. The ER 
diagram for the conceptual schema is given in Figure 3.15 [EN89]. 

In this example, there are three entity types: Employee, Department, and Project 
(an entity type is represented by a rectangle). An attribute of an entity is shown 
as an oval attached to its entity type; if an attribute is composite, its subattributes 
are shown. For example, an entity of the Employee type has the attributes Bdate, 
SSN, Name, Address, and Salary. The Name attribute is a composite attribute 
with the attributes Last, First, and Middle as its components. Relationship types 
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are shown as diamonds. In this example, the relationships are: Works-On, Super
vision, Manages, Works-For, and Controls. All of these are binary relationships. 
The participating entity types of a relationship are shown by lines connecting the 
entity type to the relationship diamond; the connection is by a double line if the 
participation of the entity type in the relationship is total. For example, Manages 
is a relationship between entity types Employee and Department, representing the 
fact that some employees are also managers of the departments. The participa
tion of the Department entity type is total (all departments must have a manager), 
whereas the participation of the Employee type is not total (only some entities of 
the type Employee may be managers). The relationship is 1:1 (also shown in the 
ER diagrarn), that is, one employee manages one department. On the other hand, 
the relationship Works-For is N: 1 between Employees and Department, signifying 
that many employees may work for one department. The relationship Works-On 
is M:N representing that an employee may work for many departments and a de
partment may have many employees working for it. A relationship can be between 
entities of the same type, as is the case with Supervision. In this case, the role name 
ofthe two entities should be specified (e.g., supervisor and supervisee). 

Note that a relationship type mayaIso have attributes. Sometimes, these attributes 
can be associated with one of the entities that takes part in the relationship, but 
conceptually they belong to the relationship. For example, the relationship Works
On has an attribute Hours, which specifies the number of hours an employee has 
spent working for a department. The number of hours is not an attribute of the 
employee or an attribute of the project; it conceptually belongs to the relationship 
Works-On. (In this case, as Works-On is an M:N relationship, this attribute cannot 
be associated with either the employee or the project). 

It is clear from this example that the focus of ER modeling is on data in the 
problem and relationships between data items. For this reason, it is suitable for 
modeling database applications. Using the ER model, the analyst can expect to get 
complete knowledge of all the data that exist in the system (including the inputs 
and outputs) and how the data are related. However, ER modeling does not help 
much in understanding the functional and processing requirements of the database 
system. As mentioUt!d earlier, the ER model can also be used later for designing 
and implementing the database. Here, we have discussed only the basic ER model; 
it has been extended to refiect concepts like subtyping. The extended model is 
sometimes called the enhanced-ER (EER) model [EN89]. 

3.2.6 Prototyping 

Prototyping is another method that can be used for problem analysis, which is 
getting a lot of attention these days. It takes a very different approach to problem 
analysis as compared to conceptual modeling-based approaches (e.g., structured 
analysis, object-oriented modeling). In prototyping, a partial system is constructed, 
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which is then used by the client, users, and developers to gain a better understanding 
of the problem and the needs. Hence, actual experience with a prototype that 
implements part of the eventual software system are used to analyze the problem 
and understand the requirements for the eventual software system. A software 
prototype can be defined as a partial implementation of a system whose purpose 
is to learn something about the problem being solved or the solution approach 
[Dav95]. As stated in this definition, prototyping can also be used to evaluate or 
check a design alternative (such a prototype is called a design prototype [Dav95]). 
Here we focus on prototyping used primarily for understanding the requirements. 

The rationale behind using prototyping for problem understanding and analysis 
is that the client and the users often find it difficult to visualize how the eventual 
software system will work in their environment just by reading a specification 
document. Visualizing the operation of the software that is yet to be built and 
whether it will satisfy the ultimate objectives, merely by reading and discussing 
the paper requirements, is indeed difficult. This is particularly true if the system is 
a totally new system and many users and clients do not have a good idea of their 
needs. The idea behind prototyping is that c1ients and the users can assess their 
needs much better if they can see the working of a system, even if the system is 
only a partial system. Prototyping emphasizes that actual practical experience is 
the best aid for understanding needs. By actually experimenting with a system, 
people can say, "I don't want this feature" or "I wish it had this feature" or "This 
is wonderful." 

There are two approaches to prototyping: throwaway and evolutionary [Dav92, 
Dav95]. In the throwaway approach the prototype is constructed with the idea that 
it will be discarded after the analysis is complete, and the final system will be built 
from scratch. In the evolutionary approach, the prototype is built with the idea that 
it will eventually be converted into the final system. 

The two approaches are very different in how they proceed and what parts of the 
system they include in the prototype. In throwaway prototyping, as the prototype is 
to be discarded, there is no point in implementing those parts of the requirements 
that are already weIl understood. Hence, the focus of the development is to include 
those features that are not properly understood. And the development approach is 
"quick and dirty" with the focus on quick development rather than quality. Experi
ence with this prototype is used to determine if the understanding of requirements 
when building the prototype is correct. Determining missing requirements is a 
secondary benefit from this approach. 

In contrast, in the evolutionary prototype approach, because the prototype is to 
be retained, those parts of the system that are weIl understood are implemented 
where it is clear they are needed. The development approach is more formal, as 
the prototype needs to be of the quality standards expected of the final system. The 
basic focus in this prototype is to elicit missing requirements. By working with a 
stable system having features that are definitely needed, the client and users can 
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determine which other services and features are needed. This approach works weIl 
when the "core" of the system, comprising its critical functions, is weIl understood. 

Whereas the throwaway prototype leads to the prototyping process model, evo
lutionary prototyping leads to the iterative enhancement process model. Though 
the evolutionary prototyping is also useful in the context, it is used more to build 
newer versions of the software rather than for requirements analysis. Furthermore, 
it is generaIly harder to implement because building "I arger" software from ex
isting software, something that is essential to this approach, is not easy to do and 
there are no general approaches for it. From the point of view of problem analysis 
and understanding, the throwaway prototypes are more suited. For the rest of the 
discussion we limit our attention to throwaway prototypes. 

The first question that needs to be addressed when prototyping is being considered 
for a project is whether or not to prototype. In other words, it is important to clearly 
understand when prototyping should be done. The requirements of a system can be 
divided into three sets-those that are weIl understood, those that are poorly under
stood, and those that are not known [Dav95]. In a throwaway prototype, the poorly 
understood requirements are the ones that should be incorporated. Based on the 
experience with the prototype, these requirements then become weIl understood, 
as shown in Figure 3.16 

It might be possible to divide the set of poorly understood requirements further 
into two sets-those critical to design, and those not critical to design [Dav95]. 
The requirements that can be easily incorporated in the system later are considered 
noncritical to design. If which of the poorly understood requirements are critical 
and which are noncritical can be determined, then the throwaway prototype should 
focus mostly on the critical requirements. Overall, we can say that if the set of 
poorly understood requirements is substantial (in particular the sub set of critical 
requirements), then a throwaway prototype should be built. 

Another approach to determining when to prototype is given in [Dav95]. According 
to this approach, there are 10 criteria that should be considered when making a 
decision about whether or not to prototype. These criteria are [Dav95]: 

1. Developer's application experience 

2. Maturity of application 

3. Problem complexity 

Prototyping 

FIGURE 3.16. Throwaway prototyping. 
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4. Usefulness of early partial functionality 

5. Frequency of changes 

6. Magnitude of changes 

7. Funds and staff profile 

8. Access to users 

9. Management compatibility 

10. Volume of fuzzy requirements 

For a project, based on the assessment of these criteria, adecision can be made 
about whether prototyping should be done, and if yes, what type of prototype should 
be built. For example, as suggested in [Dav95], a throwaway prototype should be 
built if the application is new or not weB established (criterion 2), the problem 
complexity is high, if low funding is available in the short term but high funding 
may be available in the long term (criterion 7), a high access to the users is there, 
the management is flexible, and there are substantial critical requirements that are 
fuzzy (the assessment of the rest of the criteria is not relevant). 

The development process using a throwaway prototype was discussed earlier in 
Chapter 2. The development activity starts with an SRS for the prototype. However, 
developing the SRS for the prototype requires identifying the functions that should 
be inc1uded in the prototype. This decision is typicaBy application-dependent. As 
mentioned earlier, in general, those requirements that tend to be unclear and vague 
or where the clients and users are unsure or keep changing their mind, are the ones 
that should be implemented in the prototype. User interface, new features to be 
added (beyond automating what is currently being done), and features that may be 
infeasible, are common candidates for prototyping. Based on what aspects of the 
system are inc1uded in the prototype, the prototyping can be considered vertical or 
horizontal [LJZ94]. In horizontal prototyping the system is viewed as being orga
nized as aseries of layers and some layer is the focus of prototyping. For example, 
the user interface layer is frequently a good candidate for such prototyping, where 
most of the user interface is inc1uded in the prototype. In vertical prototyping, a 
chosen part of the system, which is not weB understood, is built completely. This 
approach is used to validate some functionality or capability of the system. 

Development of a throwaway prototype is fundamentaBy different from devel
oping final production-quality software. The basic focus during prototyping is to 
keep costs low and minimize the prototype production time. Due to this, many 
of the bookkeeping, documenting, and quality control activities that are usually 
performed during software product development are kept to a minimum during 
prototyping. Efficiency concems also take a back seat, and often very high-level 
interpretive languages are used for prototyping. For these reasons, temptation to 
convert the prototype into the final system should be resisted (if this is desired, 
then evolutionary prototyping should be used). 
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Experience is gained by putting the system to use with the actual client and users 
using it. Constant interaction is needed with the clientJusers during this activity to 
understand their responses. Questionnaires and interviews might be used to gather 
user response. 

The final SRS is developed in much the same way as any SRS is developed. Tbe 
difference here is that the client and users will be able to answer questions and 
explain their needs much better because of their experience with the prototype. 
Some initial analysis is also available. 

For prototyping for requirements analysis to be feasible, its cost must be kept low. 
Consequently, only those features that will have a valuable return from the user ex
perience are included in the prototype. Exception handling, recovery, conformance 
to some standards and formats are typically not included in prototypes. Because 
the prototype is to be thrown away, only minimal development documents need to 
be produced during prototyping; for example, design documents, a test plan, and 
a test case specification are not needed during the development of the prototype. 
Another important cost-cutting measure is reduced testing. Testing consumes a 
major part of development expenditure during regular software development. By 
using cost-cutting methods, it is possible to keep the cost of the prototype to less 
than a few percent of the total development cost. 

The cost of developing and running a prototype can be around 10% of the total 
development cost [GS81]. However, it should be pointed out that if the cost of 
prototyping is 10% of the total development cost, it does not mean that the cost 
of development has increased by this amount. The main reason is that the benefits 
obtained due to the use of prototype in terms of reduced requirement eITors and 
reduced volume of requirement change requests are likely to be substantial (see the 
examples given earlier in this chapter), thereby reducing the cost of development 
itself. 

An Example 

Consider the example of the restaurant automation discussed earlier. An initial 
structured analysis of the problem was also shown earlier. During the analysis the 
restaurant owner was quite apprehensive about the ability and usefulness of the 
system. She feit that it was risky to automate, as an improper system might cause 
considerable confusion and lead to a loss of clientele. Due to the risks involved, 
it was decided to build a throwaway prototype. Note that the basic purpose of the 
prototype in this situation is not to uncover or clarify requirements but to ascertain 
the utility of the automated system. Of course, the experience with the prototype 
will also be used to ensure that the requirements are COITect and complete. 

The first step in developing a prototype is to prepare an SRS for the prototype. 
The SRS need not be formal but should identify the different system utilities to 
be included in the prototype. As mentioned earlier, these are typically the features 
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that are most unclear or where the risk is high. It was decided that the prototype 
will demonstrate the following features: 

1. Customer order processing and billing 

2. Supply ordering and processing 

The first was included, as that is where the maximum risk exists for the restaurant 
(after all, customer satisfaction is the basic objective of the restaurant, and if cus
tomers are unhappy the restaurant willloose business). The second was included, 
as maximum potential benefit can be derived from this feature. Accounting and 
statistics generation were not to be included in the prototype. 

The prototype was developed using a database system, in which good facilities for 
data entry and form (bill) generation exist. The user interface for the waiters and 
the restaurant manager was included in the prototype. The system was used, in 
parallel with the existing system, for a few weeks, and informal surveys with the 
customers were conducted. 

Customers were generally pleased with the accuracy of the bills and the details 
they provided. Some gave suggestions about the bill layout. Based on the expe
rience of the waiters, the codes for the different menu items were modified to an 
alphanumeric code. They found that the numeric codes used in the prototype were 
hard to remember. The experience of the restaurant manager and feedback from 
the supplier were used to determine the final details about supply processing and 
handling. 

3.3 Requirements Specification 

The final output is the software requirements specification document (SRS). For 
smaller problems or problems that can easily be comprehended, the specification 
activity might come after the entire analysis is complete. However, it is more likely 
that problem analysis and specification are done concurrently. An analyst typically 
will analyze some parts of the problem and then write the requirements for that 
part. In practice, problem analysis and requirements specification activities overlap, 
with movement from both activities to the other, as shown in Figure 3.1. However, 
as all the information for specification comes from analysis, we can conceptually 
view the specification activity as following the analysis activity. 

The first question that arises is: Ifformal modeling is done during analysis, why are 
the "outputs" of modeling-the structures that are built (e.g., DFD and DD, Object 
diagrams)-not treated as an SRS? The main reason is that modeling generally 
focuses on the problem structure, not its external behavior. Consequently, things 
like user interfaces are rarely modeled, whereas they frequently form a major com
ponent of the SRS. Similarly, for ease of modeling, frequently "minor issues" like 
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eIToneous situations (e.g., eITor in output) are rarely modeled properly, whereas 
in an SRS, behavior under such situations also has to be specified. Similarly, per
formance constraints, design constraints, standards compliance, recovery, etc. are 
not included in the model, but must be specified clearly in the SRS because the 
designer must know about these to properly design the system. It should therefore 
be clear that the outputs of a model are nowhere near a desirable SRS. 

For these reasons, the transition from analysis to specification should also not 
be expected to be straightforward, even if some formal modeling is used during 
analysis. It is not the case that in specification the structures of modeling are just 
specified in a more formal manner. A good SRS needs to specify many things, some 
of which are not satisfactorily handled during modeling. Furthermore, sometimes 
the structures produced during modeling are not amenable for translation into 
external behavior specification (which is what is to be specified in an SRS). For 
example, the object diagram produced during an 00 analysis is of limited use 
when specifying the external behavior of the desired system. 

Essentially, what passes from requirements analysis activity to the specification 
activity is the knowledge acquired about the system. The modeling is essentially a 
tool to help obtain a thorough and complete knowledge about the proposed system. 
The SRS is written based on the knowledge acquired during analysis. As converting 
knowledge into a structured document is not straightforward, specification itself is 
a major task, which is relatively independent. 

A consequence of this is that it is relatively less important to model "completely," 
compared to specifying completely. As the primary objective of analysis is problem 
understanding, while the basic objective of the requirements phase is to produce 
the SRS, the complete and detailed analysis structures are not as critical as the 
proponents of a technique make it out to be. In fact, it is possible to develop the 
SRS without using formal modeling technique. The basic aim of the structures 
used in modeling is to help in knowledge representation and problem partitioning, 
the structures are not an end in themselves. 

With this, let us start our discussion on requirements specification. We start by 
discussing the different desirable characteristics of an SRS. 

3.3.1 Characteristics of an SRS 

To properly satisfy the basic goals, an SRS should have certain properties and 
should contain different types of requirements. In this seetion, we discuss some of 
the desirable characteristics of an SRS and components of a SRS. A good SRS is 
[IEE87, IEE94]: 

1. COITect' 

2. Complete 
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3. Unambiguous 

4. Verifiable 

5. Consistent 

6. Ranked for importance andJor stability 

7. Modifiable 

8. Traceable 

The discussion of these properties here is based on [IEE87, IEE94]. An SRS is 
correct if every requirement included in the SRS represents something required in 
the final system. An SRS is complete if everything the software is supposed to do 
and the responses of the software to all classes of input data are specified in the SRS. 
Correctness and completeness go hand-in-hand; whereas correctness ensures that 
what is specified is done correctly, completeness ensures that everything is indeed 
specified. Correctness is an easier property to establish than completeness as it 
basically involves examining each requirement to make sure it represents the user 
requirement. Completeness, on the other hand, is the most difficult property to 
establish; to ensure completeness, one has to detect the absence of specifications, 
and absence is much harder to ascertain than determining that what is present has 
some property. 

An SRS is unambiguous if and only if every requirement stated has one and only 
one interpretation. Requirements are often written in naturallanguage, which are 
inherently ambiguous. If the requirements are specified in a naturallanguage, the 
SRS writer has to be especially careful to ensure that there are no ambiguities. 
One way to avoid ambiguities is to use some formal requirements specification 
language. The major disadvantage of using formal languages is the large effort 
required to write an SRS, the high cost of doing so, and the increased difficulty 
reading and understanding formally stated requirements (particularly by the users 
and clients). 

An SRS is verifiable if and only if every stated requirement is verifiable. A require
ment is verifiable if there exists some cost -effective process that can check whether 
the final software meets that requirement. This implies that the requirements should 
have as little subjectivity as possible because subjective requirements are difficult 
to verify. Unambiguity is essential for verifiability. As verification of requirements 
is often done through reviews, it also implies that an SRS is understandable, at least 
by the developer, the client, and the users. Understandability is clearly extremely 
important, as one of the goals of the requirements phase is to produce a document 
on which the client, the users, and the developers can agree. 

An SRS is consistent if there is no requirement that conflicts with another. Ter
minology can cause inconsistencies; for example, different requirements may use 
different terms to refer to the same object. There may be logical or temporal conflict 
between requirements causing inconsistencies. This occurs if the SRS contains two 
or more requirements whose logicalor temporal characteristics cannot be satisfied 
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together by any software system. For example, suppose a requirement states that 
an event e is to occur before another event f. But then another set of requirements 
states (directly or indirectly by transiÜvity) that event f should occur before event 
e. Inconsistencies in an SRS can be a reflection of some major problems. 

Generally, all the requirements for software are not of equal importance. Some are 
critical, others are important but not critical, and there are some which are desir
able but not very important. Similarly, some requirements are "core" requirements 
which are not likely to change as time passes, while others are more dependent 
on time. An SRS is ranked for importance and/or stability if for each requirement 
the importance and the stability of the requirement are indicated. Stability of a re
quirement reftects the chances of it changing in future. It can be reftected in terms 
of the expected change volume. 

Writing an SRS is an iterative process. Even when the requirements of a system 
are specified, they are later modified as the needs of the c1ient change. Hence an 
SRS should be easy to modify. An SRS is modifiable if its structure and style are 
such that any necessary change can be made easily while preserving completeness 
and consistency. Presence of redundancy is a major hindrance to modifiability, as 
it can easily lead to errors. For example, assume that a requirement is stated in two 
places and that the requirement later needs to be changed. If only one occurrence 
of the requirement is modified, the resulting SRS will be inconsistent. 

An SRS is traceable if the origin of each of its requirements is c1ear and if it 
facilitates the referencing of each requirement in future development [lEE87]. 
Forward traceability means that each requirement should be traceable to some 
design and code elements. Backward traceability requires that it be possible to 
trace design and code elements to the requirements they support. Traceability aids 
verification and validation. 

Of all these characteristics, completeness is perhaps the most important (and hardest 
to ensure). One of the most common problem in requirements specification is 
when some of the requirements of the c1ient are not specified. This necessitates 
additions and modifications to the requirements later in the development cyc1e, 
which are often expensive to incorporate. Incompleteness is also a major source 
of dis agreement between the dient and the supplier. The importance of having 
complete requirements cannot be overemphasized. 

3.3.2 Components of an SRS 

Completeness of specifications is difficult to achieve and even more difficult to 
verify. Having guidelines about what different things an SRS should specify will 
help in completely specifying the requirements. Here we describe some of the 
system properties that an SRS should specify. The basic issues an SRS must address 
are: 
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1. Functionality 

2. Performance 

3. Design constraints imposed on an implementation 

4. Extemal interfaces 

Conceptually, any SRS should have these components. If the traditional approach 
to requirement analysis is being followed, then the SRS might even have portions 
corresponding to these. However, if, for example, object-oriented analysis is done 
for problem analysis, then the functional requirements might be specified indirectly 
by specifying the services on the objects. 

Functional Requirements 

Functional requirements specify which outputs should be produced from the given 
inputs. They describe the relationship between the input and output of the system. 
For each functional requirement, a detailed description of all the data inputs and 
their source, the units of measure, and the range of valid inputs must be specified. 

All the operations to be performed on the input data to obtain the output should be 
specified. This includes specifying the validity checks on the input and output data, 
parameters affected by the operation, and equations or other logical operations that 
must be used to transform the inputs into corresponding outputs. For example, if 
there is a formula for computing the output, it should be specified. Care must be 
taken not to specify any algorithms that are not part of the system but tbat may be 
needed to implement the system. These decisions should be left for the designer. 

An important part ofthe specification is the system behavior in abnormal situations, 
like invalid input (which can occur in many ways) or error during computation. 
The functional requirement must clearly state what the system should do if such 
situations occur. Specifically, it should specify the behavior of the system for invalid 
inputs and invalid outputs. Furthermore, bebavior for situations where tbe input 
is valid but tbe normal operation cannot be performed should also be specified. 
An example of this situation is an airline reservation system, wbere a reservation 
cannot be made even for valid passengers if the airplane is fully booked. In short, 
the system bebavior for all foreseen inputs and all foreseen system states should 
be specified. These special conditions are often Iikely to be overlooked, resulting 
in a system that is not robust. 

Performance Requirements 

This part of an SRS specifies the performance constraints on the software system. 
All the requirements relating to the performance characteristics of the system must 
be clearly specified. There are two types of performance requirements: static and 
dynamic. . 
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Static requirements are those that do not impose constraint on the execution char
acteristics of the system. These include requirements like the number of terminals 
to be supported, the number of simultaneous users to be supported, and the number 
of files that the system has to process and their sizes. These are also called capa city 
requirements of the system. 

Dynamic requirements specify constraints on the execution behavior of the system. 
These typically include response time and throughput constraints on the system. 
Response time is the expected time for the completion of an operation under spec
ified circumstances. Throughput is the expected number of operations that can 
be performed in a unit time. For example, the SRS may specify the number of 
transactions that must be processed per unit time, or what the response time for 
a particular command should be. Acceptable ranges of the different performance 
parameters should be specified, as well as acceptable performance for both normal 
and peak workload conditions. 

All of these requirements should be stated in measurable terms. Requirements 
such as "response time should be good" or the system must be able to "process 
all the transactions quickly" are not desirable because they are imprecise and not 
verifiable. Instead, statements like "the response time of command x should be 
less than one second 90% of the times" or "a trans action should be processed in 
less than one second 98% of the times" should be used to declare performance 
specifications. 

Design Constraints 

There are a number of factors in the client's environment that may restrict the 
choices of a designer. Such factors include standards that must be followed, re
source limits, operating environment, reliability and security requirements, and 
policies that may have an impact on the design of the system. An SRS should 
identify and specify all such constraints. 

Standards Compliance: This specifies the requirements for the standards the 
system must follow. The standards may include the report format and accounting 
procedures. There may be audit tracing requirements, which require certain kinds 
of changes, or operations that must be recorded in an audit file. 

Hardware Limitations: The software may have to operate on some existing or 
predetermined hardware, thus imposing restrictions on the design. Hardware limi
tations can include the type of machines to be used, operating system available on 
the system, languages supported, and limits on primary and secondary storage. 

Reliability and Fault Tolerance: Fault tolerance requirements can place a ma
jor constraint on how the system is to be designed. Fault tolerance requirements 
often make the system more complex and expensive. Requirements about system 
behavior in the face of certain kinds of faults is specified. Recovery requirements 
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are often an integral part here, detailing what the system should do if some failure 
occurs to ensure certain properties. Reliability requirements are very important for 
critical applications. 

Security: Security requirements are particularly significant in defense systems 
and many database systems. Security requirements place restrictions on the use 
of certain commands, control access to data, provide different kinds of access 
requirements for different people, require the use of passwords, and cryptography 
techniques, and maintain a log of activities in the system. 

External Interface Requirements 

All the possible interactions ofthe software with people, hardware, and other soft
ware should be clearly specified. For the user interface, the characteristics of each 
user interface of the software product should be specified. User interface is becom
ing increasingly important and must be given proper attention. A preliminary user 
manual should be created with all user commands, screen formats, an explanation 
of how the system will appear to the user, and feedback and eITor messages. Like 
other specifications these requirements should be precise and verifiable. So, a state
ment like "the system should be user friendly" should be avoided and statements 
like "commands should be no longer than six characters" or "command names 
should reftect the function they perform" used. 

For hardware interface requirements, the SRS should specify the logical character
istics of each interface between the software product and the hardware components. 
Ifthe software is to execute on existing hardware or on predetermined hardware, all 
the characteristics ofthe hardware, including memory restrictions, should be spec
ified. In addition, the CUITent use and load characteristics of the hardware should 
be given. 

The interface requirement should specify the interface with other software the 
system will use or that will use the system. This includes the interface with the 
operating system and other applications. The message content and format of each 
interface should be specified. 

3.3.3 Specification Languages 

Requirements specification necessitates the use of some specification language. 
The language should possess many of the desired qualities (modifiablity, under
standablity, unambiguous, and so forth) of the SRS. In addition, we want the Ian
guage to be easy to leam and use. As one might expect, many of these character
istics conftict in the selection of a specification language. For example, to avoid 
ambiguity, it is best to use some formal Ianguage. But for ease of understanding 
a natural language might be preferable. Here we describe some of the commonly 
used languages for requirement specification. 
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Structured English 

Naturallanguages have been widely used for specifying requirements. The major 
advantage of using a naturallanguage is that both client and supplier understand the 
language. Specifying the problem to be solved in a naturallanguage is an expected 
outcome in the evolution of software engineering. Initially, since the software sys
tems were smalI, requirements were verbally conveyed using the naturallanguage 
for expression (in fact, much in-house software development is still done in this 
manner). Later, as software requirements grew more complex, the requirements 
were specified in a written form, rather than orally, but the means for expression 
stayed the same. 

The use of naturallanguages has some important drawbacks. By the very nature 
of a naturallanguage, written requirements will be imprecise and ambiguous. This 
goes against some of the desirable characteristics that we stated earlier. Further
more, efforts to be more precise and complete result in voluminous requirement 
specification documents, as naturallanguages are quite verbose. 

Due to these drawbacks, there is an effort to move from natural languages to 
formal languages for requirement specification. However, natural languages are 
still widely used and are likely to be in use for the near future. To reduce some of the 
drawbacks, most often naturallanguage is used in a structured fashion. In structured 
English (choosing English as our natural language) , requirements are broken into 
sections and paragraphs. Each paragraph is then broken into subparagraphs. Many 
organizations also specify strict uses of some words like "shall," "perhaps," and 
"should" and try to restrict the use of common phrases in order to improve the 
precision and reduce the verbosity and ambiguity. 

Regular Expressions 

Regular expressions can be used to specify the structure of symbol strings formally. 
String specification is useful for specifying such things as input data, command 
sequence, and contents of a message. Regular expressions are \a useful approach 
for such cases. Regular expressions can be considered as grammar for specifying 
the valid sequences in a language and can be automatically processed. They are 
routinely used irr compiler construction far recognition of symbols and tokens. 

There are a few basic constructs allowed in regular expressions: 

1. Atoms: The basic symbols or the alphabet of the language. 

2. Composition: Formed by concatenating two regular expressions. For regular 
expressions rl and r2, concatenation is expressed by (rl r2), and denotes 
concatenation of strings represented by rl and r2. 

3. Alternation: Specifies the either/or relationship. For rl and r2, alternation is 
specified by (rl I r2) and denotes the union of the sets of strings specified by 
rl and r2. 
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4. Closure: Specifies repeated occurrence of a regular expression. This is the 
most powerful of the constructs. For a regular expression r, closure is specified 
by r*, which means that strings denoted by r are concatenated zero or more 
times. 

With these basic constructs, many data streams can be defined. Hierarchical speci
fications can also be constructed by using abstract names for specifying the regular 
expressions and then giving the regular expression specification for those names. 
For complex data streams, hierarchical specifications can enhance clarity. 

Example: Consider a file containing student records. Each student record has 
the name of the student, followed by the social security number, followed by the 
sequence of courses the student has taken. This input file can easily be specified 
as a regular expression. 

Record_file = (Name SSN Courses)* 
Name = (Last First) 
Last, First = (A I B I CI· .. I Z)(a I b I cl· .. I z)* 
SSN = digit digit digit digit digit digit digit digit digit 
digit = (0 I I I 2 I ... I 9) 
Courses = (C Jlumber)* 

And C-Ilumber can be specified depending on conventions followed (e.g., "CS" 
followed by a three digit number). Once the regular expression is specified, check
ing that a given input is a valid string in the language (i.e., has the structure specified 
by the regular expression) can be done automatically. Tools exist that will generate 
the analyzers for a given regular expression. 

Decision Tables 

Decision tables provide a mechanism for specifying cornplex decision logic. It is 
formal, table-based notation that can also be automatically processed to check for 
qualities like cornpleteness and lack of ambiguity. 

Adecision table has two parts. The top part lists the different conditions, and the 
bottorn part specifies different actions. The table essentially specifies under what 
cornbination of conditions what actions are to be performed. It is best to specify 
the conditions in a manner such that the condition can either be true or false, thus 
taking only two values. In this case if there are N conditions specified, a cornplete 
decision table will have 2N different cornbinations listed for which actions must 
be specified. However, not all the combinations of conditions might be feasible. 

Example: Consider the part of a banking system responsible for debiting from 
accounts. For this part the relevant conditions are: 

Cl: Tpe account number is correct. 
C2: The signature matches. 
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1 2 3 4 5 

Cl N N Y Y Y 

C2 N N Y Y 
C3 N Y N 
Al X 
A2 X X 
A3 X 

TABLE 3.2. Decision table for the banking example. 

C3: There is enough money in the account. 

The possible actions are: 

Al: Give money. 
A2: Give statement that not enough money is there. 
A3: Call the vigilance department to check for fraud. 

Part of the decision table for this is shown in Table 3.2. The decision rules are the 
different combinations of conditions that are of interest. For each condition a Y 
means yes or true, N means no or faIse, and a blank means that it can be either true 
or false. If an action is to be taken for a particular combination of the conditions, 
it is shown by an X for that action. If there is no mark for an action for a particular 
combination of conditions, it means that the action is not to be performed. 

Finite State Automata 

Finite state automata (FSA) includes the concept of state and input data streams. 
An FSA has a finite set of states and specifies transitions between the states. The 
transition from one state to another is based on the input. An FSA can be specified 
pictorially, formally as grammar and transition rules, or as a transition table. 

FSAs are used extensively for specifying communication protocois. They are not 
used much in data processing applications. 

Example: Consider· a simplified version of the altemating bit protocol for data 
communication. Anode can receive a message numbered 0 or 1. When it receives 
message 0, it sends an acknowledgment and waits for the message 1 to arrive. 
When message 1 arrives, it sends an acknowledgment and then waits for message 
o to arrive. An FSA specifying this required behavior of the node is shown in 
Figure 3.17. 

State sO is. the state where the node is waiting for message 0 to arrive. When this 
message arrives, astate transition occurs and the state changes from sO to sI. The 
output produced during this transition is the ACK message. Similarly, when the 
system is in s!ate sI, it is waiting for message 1 to arrive. When the message arrives, 
it sends the ACK message and changes state to sO. 
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O/ACK 

1/ACK 

FIGURE 3.17. FSA for the data communication example. 

3.3.4 Structure of a Requirements Document 

All the requirements for the system have to be included in a document that is 
clear and concise. For this, it is necessary to organize the requirements document 
as sections and subsections. There can be many ways to structure a requirements 
document. Many methods and standards have been proposed for organizing an 
SRS (see [Dav93] for some examples). One of the main ideas of standardizing the 
structure of the document is that with an available standard, each SRS will fit a 
certain pattern, which will make it easier for others to understand (that is one of 
the roles of any standard). Another role these standards play is that by requiring 
various aspects to be specified, they help ensure that the analyst does not forget 
some major property. Here we discuss the organization proposed in the IEEE guide 
to software requirements specifications [IEE87, IEE94]. 

The IEEE standards recognize the fact that different projects may require their 
requirements to be organized differently, that is, there is no one method that is 
suitable for all projects.1t provides different ways of structuring the SRS. The first 
two sections of the SRS are the same in all of them. The general structure of an 
SRS is given in Figure 3.18. 

1. Introduction 
1.1 Purpose 
1.2 Scope 
1.3 Definitions, Acronyms, and Abbreviations 
1.4 References 
1.5 Overview 

2. Overall Description 
2.1 Product Perspective 
2.2 Product Functions 
2.3 User Characteristics 
2.4 General Constraints 
2.5 Assumptions and Dependencies 

3. Specific Requirements 

FIGURE 3.18. General structure of an SRS. 
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The introduction section contains the purpose, scope, overview, etc. of the require
ments document. It also contains the references cited in the document and any 
definitions that are used. Section 2 describes the general factors that affect the 
product and its requirements. Specific requirements are not mentioned, but a gen
eral overview is presented to make the understanding of the specific requirements 
easier. Product perspective is essentially the relationship of the product to other 
products; defining if the product is independent or is apart of a larger product, and 
what the principal interfaces of the product are. A general abstract description of 
the functions to be performed by the product is given. Schematic diagrams show
ing a general view of different functions and their relationships with each other 
can often be useful. Similarly, typical characteristics of the eventual end user and 
general constraints are also specified. 

The specific requirements section (section 3 ofthe SRS) describes all the details that 
the software developer needs to know for designing and developing the system. This 
is typically the largest and most important part of the document. For this section, 
different organizations have been suggested in the standard. These requirements 
can be organized by the modes of operation, user class, object, feature, stimulus, 
or functional hierarchy [IEE94]. One method to organize the specific requirements 
is to first specify the external interfaces, followed by functional requirements, 
performance requirements, design constraints, and system attributes. This strocture 
is shown in Figure 3.19 [IEE94]. 

The external interface requirements section specifies all the interfaces of the soft
ware: to people, other softwares, hardware, and other systems. User interfaces are 
clearly a very important component; they specify each human interface the system 
plans to have, including screen formats, contents of menus, and command struc
ture. In hardware interfaces, the logical characteristics of each interface between 
the software and hardware on which the software can ron are specified. Essen
tially, any assumptions the software is making about the hardware are listed here. 
In software interfaces, all other software that is needed for this software to ron is 
specified, along with the interfaces. Communication interfaces need to be specified 
if the software communicates with other entities in other machines. 

In the functional requirements section, the functional capabilities of the system 
are described. In this organization, the functional capabilities for all the modes of 
operation of the software are given. For each functional requirement, the required 
inputs, desired outputs, and processing requirements will have to be specified. For 
the inputs, the source of the inputs, the units of measure, valid ranges, accuracies, 
etc. have to be specified. For specifying the processing, all operations that need to 
be performed on the input data and any intermediate data produced should be spec
ified. This includes validity checks on inputs, sequence of operations, responses to 
abnormal situations, and methods that must be used in processing to transform the 
inputs into corresponding outputs. Note that no algorithms are generally specified, 
only the relationship between the inputs and the outputs (which may be in the 
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3. Specific Requirements 
3.1 External Interface Requirements 

3 .1.1 User Interfaces 
3.1.2 Hardware Interfaces 
3.1.3 Software Interfaces 
3.1.4 Communication Interfaces 

3.2. Functional Requirements 
3.2.1 Mode 1 

3.2.1.1 Functional Requirement 1.1 

3.2.1.n Functional Requirement l.n 

3.2.m Mode m 
3.2.m.l Functional Requirement m.1 

3.2.m.n Functional Requirement m.n 
3.3 Performance Requirements 
3.4 Design Constraints 
3.5 Attributes 
3.6 Other Requirements 

FIGURE 3.19. One organization for specific 
requirements [IEE94]. 

form of an equation or a formula) so that the designer can design an algorithm to 
produce the outputs from the inputs. For outputs, the destination of outputs, units 
of measure, range of valid outputs, eITor messages, etc. all have to be specified. 

The performance section should specify both static and dynamic performance re
quirements. All factors that constrain the system design are described in the per
formance constraints section. The attributes section specifies some of the overall 
attributes that the system should have. Any requirement not covered under these 
is listed under other requirements. Design constraints specify all the constraints 
imposed on design (e.g., security, fault tolerance, and standards compliance). 

There are three other outlines proposed by the IEEE standard for organizing "spe
cific requirements." However, all these outlines are essentially just guidelines. 
There are other ways a requirements document can be organized. The key con
cern is that after the requirements have been identified, the requirements document 
should be organized in such a manner that it aids validation and system design. For 
different projects many of these sections may not be needed and can be omitted. 
Especially for smaller projects, so me of the sections and subsections may not be 
necessary to properly specify the requirements. 
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3.4 Validation 

The development of software starts with the requirements document, which is 
also used to determine eventually whether or not the delivered software system is 
acceptable. It is therefore important that the requirements specification contains no 
errors and specifies the c1ient's requirements correctly. Furthermore, as we have 
seen, the longer an error remains undetected, the greater the cost of correcting 
it. Hence, it is extremely desirable to detect errors in the requirements before the 
design and development of the software begin. 

Due to the nature of the requirement specification phase, there is a lot of room 
for misunderstanding and committing errors, and it is quite possible that the re
quirements specification does not accurately represent the c1ient's needs. The basic 
objective of the requirements validation activity is to ensure that the SRS reftects 
the actual requirements accurately and c1early. A related objective is to check that 
the SRS document is itself of "good quality" (some desirable quality objectives 
are given later). 

Before we discuss validation methods, let us consider the type of errors that typ
ically occur in an SRS. Many different types of errors are possible, but the most 
common errors that occur can be c1assified in four types: omission, inconsistency, 
incorrect fact, and ambiguity. Omission is a common error in requirements. In this 
type of error, some user requirement is simply not inc1uded in the SRS; the omitted 
requirement may be related to the behavior of the system, its performance, con
straints, or any other factor. Omission directly affects the external completeness 
of the SRS. Another common form of error in requirements is inconsistency. In
consistency can be due to contradictions within the requirements themselves or to 
incompatibility of the stated requirements with the actual requirements of the c1ient 
or with the environment in which the system will operate. The third common re
quirement error is incorrect fact. Errors of this type occur when some fact recorded 
in the SRS is not correct. The fourth common error type is ambiguity. Errors of this 
type occur when there are some requirements that have multiple meanings, that is, 
their interpretation is not unique. 

Some projects have collected data about requirement errors. In [Dav89] the effec
tiveness of different methods and tools in detecting requirement errors inspecifi
cations for a data processing application is reported. On an average, a total of more 
than 250 errors were detected, and the percentage of different types of errors was: 

Incorrect Fact Inconsistency Ambiguity 

10% 38% 26% 

In [BW81] the errors detected in the requirements specification of the A -7 project 
(which dealS' with areal-time ftight control software) were reported. A total of 
about 80 errdrs were detected, out of which about 23% were c1erical in nature. Of 
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the remaining, the distribution with error type was: 

Incorrect Fact Inconsistency Ambiguity 

49% 13% 5% 

Though the distributions of errors is different in these two cases, reflecting the 
difference in application domains and the error detection methods used, they do 
suggest that the major problems (besides clerical errors) are omission, incorrect 
fact, inconsistency, and ambiguity. If we take the average of the two data tables, 
it shows that all four classes of errors are very significant, and a good fraction 
of errors belong to each of these types. This implies, that besides improving the 
quality of the SRS itself (e.g., no clerical errors), the validation should focus on 
uncovering these types of errors. Let us now look at a few common methods of 
requirements validation. 

3.4.1 Requirement Reviews 

Because requirements specification formally specifies something that originally 
existed informally in people's minds, requirements validation must necessarily in
volve the clients and the users. Requirement reviews, in which the SRS is carefully 
reviewed by a group of people including representatives of the clients and the 
users, are the most common method of validation. Reviews can be used through
out software development for quality assurance and data collection, and there is 
considerable data now to suggest that reviews and inspections, which are manual 
processes executed on textual documents, are one of the most effective means of 
detecting errors. As requirements are generally textual documents that cannot be 
executed, reviews are eminently suitable for requirements validation. We will dis
cuss the general procedure of reviews in the next chapter. Here we only discuss 
some aspects relevant to requirements reviews. 

Requirements review is a review by a group of people to find errors and point 
out other maUers of concern in the requirements specifications of a system. The 
review group should include the author of the requirements document, someone 
who understands the n.eeds of the client, a person of the design team, and the 
person(s) responsible for maintaining the requirements document. It is also good 
practice to include some people not directly involved with product development, 
like a software quality engineer. 

One way to organize the review meeting is to have each participant go over the 
requirements before the meeting and mark the items he has doubts about or he 
feels need further clarification. Checklists can be quite useful in identifying such 
items. In the meeting, each participant goes through the list of potential defects 
he has uncovered. As the members ask questions, the requirements analyst (who 
is the author of ,fue requirements specification document) provides clarifications 
if there are no errors or agrees to the presence of errors. Other people may need 
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further clarification or join the discussion at any time. The discussions that take 
place during the review are likely to uncover eITors other than the suspected eITor 
that may have started the discussion. These discussions form a very important part 
of the review process. 

Alternatively, the meeting can start with the analyst explaining each of the re
quirements in the document. The participants ask questions, share doubts, or seek 
clarifications. EITors are uncovered by the participants and the discussion that en
sues. Note that the focus of reviews is on group dynamics and synergy for eITor 
detection, not on individual capability for detecting eITors. In other words, the idea 
of a structured review meeting is that if the review is held in this mann er, the 
total number of eITors detected will be greater than the sum of eITors that would 
be detected if the review participants spent the same amount of time separately 
reviewing. 

Although the primary goal of the review process is to reveal any eITors in the 
requirements, such as those discussed earlier, the review process is also used to 
consider factors affecting quality, such as testability and readability. During the 
review, one of the jobs of the reviewers is to uncover the requirements that are too 
subjective and too difficult to define criteria for testing that requirement. 

Checklists are frequently used in reviews to focus the review effort and ensure 
that no major source of eITors is overlooked by the reviewers. A possible checklist 
that can be used for reviews [Dun84] is given next. A good checklist will usuaBy 
depend on the project. 

• Are all hardware resources defined? 

• Have the response times of functions been specified? 

• Have aB the hardware, external software, and data interfaces been defined? 

• Have aB the functions required by the client been specified? 

• Is each requirement testable? 

• Is the initial state ofthe system defined? 

• Are the responses to exceptional conditions specified? 

• Does the requirement contain restrictions that can be controBed by the 
designer? 

• Are possible future modifications specified? 

Effectiveness: Requirements reviews are probably the most effective means for 
detecting requirement eITors. The data in [BW81] about the A-7 project shows 
that about 33% of the total requirement eITors detected were detected by review 
processes, and about 45% of the requirement eITors were detected dming the design 
phase when the requirement document is used as a reference for design. This clearly 
suggests that if requirements are reviewed then not only a substantial fraction of 
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the errors are detected by them, but a vast majority of the remaining errors are 
detected soon afterwards in the design activity. 

3.4.2 Other Methods 

Requirement reviews remain the most commonly used and viable means for re
quirement validation. However, there are other approaches that may be applicable 
for some systems or parts of systems or systems that have been specified formally. 

Automated Cross-Referencing 

Automated cross-referencing uses processors to verify some properties of require
ments. Any automated processing of requirements is possible if the requirements 
are written in a formal specification language or a language specifically designed 
for machine processing. We saw examples of such languages earlier. These tools 
typically focus on checks for internal consistency and completeness, which some
times leads to checking of extern al completeness. However, these tools cannot 
directIy check for external completeness (after aIl, how will a tool know that some 
requirement has been completely omitted). For this reason, requirement reviews 
are needed even if the requirements are specified through a tool or in a formal 
notation. 

If the requirements are in machine-processable form, they can be analyzed for 
internal consistency among different elements of the requirements. CIosure prop
erties can also be checked to help uncover incompleteness of requirements. The 
language processors can also produce cross-reference information, which can then 
be used in manual analysis. 

Effectiveness: The experiments reported in [Dav89, C+83] reveal that through the 
use oftools (and the languages associated with them) such as REVS and PSLIPSA, 
many errors can be detected. The two projects reported that 250 to 350 errors were 
detected by different tools. The data suggests that tools are consistently successful 
in detecting inconsistency errors in the requirements, followed by ambiguity. They 
can also detect a fair number of omission type of requirements. However, these 
experiments do not indicate what fraction of the total requirement errors were de
tected, i.e., how many slipped by and were caught later. Overall, it can be said that 
if these languages and tools are used, many errors that can be detected internally 
from the document itself (inconsistency, ambiguity, etc.) are indeed caught. And 
the check for internal completeness that these tools can make (e.g., something is 
referred in one place but is not specified anywhere) frequently leads to detection of 
missing requirements. However, no tool can directIy check for "external complete
ness" (i.e., the requirements specify all the requirements). Hence, these methods 
should not be c;onsidered a means to replace reviews but should be considered as 
complementary to reviews. To effectively combine the two, the tools can be used to 
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detect the internal errors, thereby freeing the reviewers of this burden and helping 
focus the review process to the issueof external completeness. 

Reading 

The goal in reading [Boe84a] is to have someone other than the author ofthe require
ments read the requirements specification document to identify potential problems. 
By having the requirements read by another person who may have has different 
"interpretation" of requirements, many of the requirements problems caused by 
misinterpretations or ambiguities can be identified. Furthermore, if the reader is a 
person who is interested in the project (like a person from the quality assurance 
group that will eventually test the system), issues that could cause problems later 
may be brought to the surface. For example, if a tester reads the requirements, it is 
likely that the testability of requirements will be weIl examined. 

Reading is effective only if the reader takes the job seriously and reads the require
ments carefuIly. Even with serious readers, reading is limited in scope for catching 
completeness and consistency errors, particularly for large software systems. 

Constructing Scenarios 

Scenarios [Boe84a] describe different situations of how the system will work once 
it is operational. The most common area for constructing scenarios is that of system
user interaction. Constructing scenarios is good for darifying misunderstandings 
in the human-computer interaction area. They are of limited value for verifying the 
consistency and completeness of requirements. 

Prototyping 

Though prototypes are generally built to ascertain requirements, a prototype can 
be built to verify requirements. Prototypes can be quite useful in verifying the 
feasibility of some of the requirements (such as answering the question Can this 
be done?). A prototype that has been built during problem analysis can also aid 
validation. For example, if the prototype has most of the user interfaces and they 
have been approved after use by the dient and users, then the user interface, as 
specified by the prototype, can be considered validated. No further validation need 
be performed for them. 

As we stated earlier, the basic purpose of metrics at any point during a development 
project is to provide quantitative information to the management process so that the 
information ca'll be used to effectively control the development process. Unless the 
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metric is useful in some form to monitor or control the cost, schedule, or quality of 
the project, it is of little use for a project. There are very few metrics that have been 
defined for requirements, and little work has been done to study the relationship 
between the metric values and the project properties of interest. This says more 
about the state of the art of software metrics, rather than the usefulness of having 
such metrics. In this section, we will discuss some of the metrics and how they 
can be used. As we will see, some of these are fairly primitive, and their predictive 
value is limited. 

3.5.1 Size Measures 

A major problem after requirements are done is to estimate the effort and schedule 
for the project. For this, some metrics are needed that can be extracted from the 
requirements and used to estimate cost and schedule (through the use of some 
model). As the primary factor that determines the cost (and schedule) of a software 
project is its "size," a metric that can help get an idea of the size of the project 
will be useful for estimating cost. This implies that during the requirement phase 
measuring the size of the requirement specification itself is pointless, unless the 
size of the SRS reftects the effort required for the project. This also requires that 
relationships of any proposed size measure with the ultimate effort of the project 
be established before making general use of the metric. We will discuss a few size 
metrics that are used for requirements. Out of these, the function point has been 
the most widely used, and significant correlation between the size measured in 
function points and project cost has been observed. Cost estimation, which is a 
major reason for estimating size during the requirements phase, is discussed in the 
next chapter. 

Text-Based Measures 

A commonly used size metric for requirements is the size of the text of the SRS. 
The size could be in number 0/ pages, number 0/ paragraphs , number 0/ functional 
requirements etc. As can be imagined, these measures are highly dependent on 
the authors of the document. A verbose analyst who likes to make heavy use of 
illustrations may produce an SRS that is many times the size of the SRS of a terse 
analyst. Similarly, how much an analyst refines the requirements has an impact on 
the size of the document. Generally, such metrics cannot be accurate indicators of 
the size of the project. They are used mostly to convey a general sense about the 
size of the project. For this purpose they are used quite frequently and their use is 
not unjustified. 

Function Points 

Function points [AG83] are one of the most widely used measures of software size. 
The basis of function points is that the "functionality" of a system, that is, what 
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the system performs, is the measure of the system size. And as functionality is 
independent of how the requirements of the system are specified, or even how they 
are eventually implemented, such a measure has a nice property of being depen
dent solelyon the system capabilities. In function points, the system functionality 
is calculated in terms of the number of functions it implements, the number of 
inputs, the number of outputs, etc.-parameters that can be obtained after require
ments analysis and that are independent of the specification (and implementation) 
language. 

The original formulation for computing the function points uses the count of five 
different parameters, namely, external input types, externaioutput types, logical 
internal file types, external interface file types, and extern al inquiry types. Ac
cording to the function point approach, these five parameters capture the entire 
functionality of a system. However, two elements of the same type may differ in 
their complexity and hence should not contribute the same amount to the "func
tionality" of the system. To account for complexity, each parameter in a type is 
classified as simple, average, or complex. The definition of each of these types and 
the interpretation of their complexity levels is given later [AG83]. 

Each unique input (data or control) type that is given as input to the application from 
outside is considered of external input type and is counted. An external input type 
is considered unique if the format is different from others or if the specifications 
require a different processing for this type from other inputs of the same format. 
The source of the external input can be the user, or some other application, files. 
An external input type is considered simple if it has a few data elements and 
affects only a few internal files of the application. It is considered complex if it 
has many data items and many internal logical files are needed for processing 
them. The complexity is average if it is in between. Note that files needed by 
the operating system or the hardware (e.g., configuration files) are not counted as 
external input files because they do not belong to the application but are needed 
due to the underlying technology. 

Similarly, each unique output that leaves the system boundary is counted as an ex
ternal output type. Again, an externaioutput type is considered unique ifits format 
or processing is different. Reports or messages to the users or other applications 
are counted as external input types. The complexity criteria is similar to that of the 
external input type. For areport, if it contains a few colurnns it is considered sim
ple, if it has multiple columns it is considered average, and if it contains complex 
structure of data and references many files for production, it is considered complex. 

Each application maintains information internally for performing its functions. 
Each logical group of data or control information that is generated, used, and 
maintained by the application is counted as a logical internal file type. A logical 
internal file is simple if it contains a few record types, complex if it has many record 
types, and average if it is in between. 
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Files that are passed or shared between applications are counted as external inter
face file type. Note that each such file is counted for all the applications sharing it. 
The complexity levels are defined as for logical internal file type. 

A system may have queries also, where a query is defined as an input-output 
combination where the input causes the output to be generated almost immediately. 
Each unique input-output pair is counted as an external inquiry type. A query is 
unique if it differs from others in format of input or output or if it requires different 
processing. For classifying the query type, the input and output are classified as for 
external input type and extern al output type, respectively. The query complexity is 
the larger of the two. 

Each element of the same type and complexity contributes a fixed and same amount 
to the overall function point count of the system (wh ich is a measure of the func
tionality of the system), but the contribution is different for the different types, and 
for a type, it is different for different complexity levels. The amount of contribution 
of an element is shown in Table 3.3 [AG83, U90]. 

Dnce the counts for aB five different types are known for all three different com
plexity classes, the raw or unadjusted function point (UFP) can be computed as a 
weighted sum as follows: 

i=5 j=3 

UFP = LLWijCj, 
i=l j=l 

where i reflects the row and j reflects the column in Table 3.3; Wij is the entry 
in the ith row and jth column of the table (i.e., it represents the contribution of 
an element of the type i and complexity j); and Cij is the count of the number of 
elements oftype i that have been classified as having the complexity corresponding 
to column j. 

Dnce the UFP is obtained, it is adjusted far the environment complexity. For this, 
14 different characteristics of the system are given. These are data communica
tions, distributed processing, performance objectives, operation configuration load, 
trans action rate, on-line data entry, end user efficiency, on-line update, complex 
processing logic, re-usability, installation ease, operational ease, multiple sites, and 
des ire to facilitate change. The degree of influence of each of these factors is taken 

Function type Simple Average Complex 

External input 3 4 6 
External output 4 5 7 
Logical internal file 7 10 15 
External interface file 5 7 10 
External inquiry 3 4 6 

TABLE 3.3. Function point contribution of an element. 
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to be from 0 to 5, representing the six different levels: not present (0), insignificant 
influence (1), moderate influence (2), average influence (3), significant influence 
(4), and strong influence (5). The 14 degrees of influence for the system are then 
summed, giving a total N (N ranges from 0 to 14*5=70). This N is used to obtain 
a complexity adjustment factor (CAF) as fallows: 

CAF = 0.65 + O.OlN. 

With this equation, the value of CAF ranges between 0.65 and 1.35. The delivered 
function points (DFP) are simply computed by multiplying the UFP by CAF. That 
is, 

Delivered Function Points = CAF * Unadjusted Function Points. 

As we can see, by ad justment for environment complexity, the DFP can differ from 
the UFP by at most 35%. The final function point count far an application is the 
computed DFP. 

Function points have been used as a size measure extensively and have been used 
for cast estimation. Studies have also been done to establish correlation between 
DFP and the final size of the software (measured in lines of code.) For example, 
studies reported in [LJ90] suggest that one function point is approximately equal 
to a little more than 100 lines of Cobol code and approximately equal to about 80 
lines of PL 1 code. By building models between function points and delivered lines 
of code (and existing results have shown that a reasonably strong correlation exists 
between DFP and DLOC so that such models can be built), one can estimate the 
size of the software in DLOC, if desired. 

As can be seen from the manner in which the functionality of the system is de
fined, the function point approach has been designed for the data processing type 
of applications. For data processing applications, function points generaIly per
form very weIl [Kem87] and have now gained a widespread acceptance. For such 
applications, function points are used as an effective means of estimating cost and 
evaluating productivity. However, its utility as a size measure for nondata process
ing types of applications (e.g., real-time software, operating systems, and scientific 
applications) has not been weIl established, and it is generaIly believed that for such 
applications function points are not very weIl suited. 

A major drawback of the function point approach is that the process of computing 
the function points involves subjective evaluation at various points and the final 
computed function point for a given SRS may not be unique and can depend on the 
analyst. Same of the places where subjectivity enters are: (1) different interpreta
tions oftheSRS (e.g., whether samething should count as an external input type or 
an external interface type, whether or not samething constitutes a logical internal 
file, if two reports differ in a very minor way should they be counted as two or 
one); (2) complexity estimation of a user function is totaIly subjective and depends 
entirely on theanalyst (an analyst may classify samething as complex while some
one else may classify it as average) and complexity can have a substantial impact 
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on the final count as the weightage for simple and complex frequently differ by a 
factor of 2; and (3) value judgments for the environment complexity. These factors 
make the process of function point 'counting somewhat subjective. Organizations 
that use function points try to specify a more precise set of counting rules in an 
effort to reduce this subjectivity. It has also been found that with experience this 
subjectivity is reduced [LJ90). Overall, despite this subjectivity, use of function 
points for data processing applications continues to grow. 

The main advantage of function points over the size metric of DLOC, the other 
commonly used approach, is that the definition ofDFP depends only on information 
available from the specifications, whereas the size in DLOC cannot be directly 
determined from specifications. Furthermore, the DFP count is independent of the 
language in which the project is implemented. Though these are major advantages, 
another drawback of the function point approach is that even when the project is 
finished, the DFP is not uniquely known and has subjectivity. This makes building 
of models for cost estimation hard, as these models are based on information 
about completed projects (cost models are discussed further in the next chapter). 
In addition, determining the DFP-from either the requirements or a completed 
project--cannot be automated. That is, considerable effort is required to obtain 
the size, even for a completed project. This is a drawback compared to DLOC 
measure, as DLOC can be determined uniquely by automated tools once the project 
is completed. 

Bang Metric 

Bang is another requirement-based metric that has been proposed to quantify the 
size of the project [DeM82). The metric assumes that a data ftow diagram and 
data dictionary-based analysis have been performed for the problem and hence is 
limited in scope to the projects that satisfy this assumption. 

The basic data for the bang metric is the count ofjunctional primitives that lie inside 
the man-machine boundary. Functional primitives are the lowest-Ievel bubbles in 
the data ftow diagram (in the portion inside the man-machine boundary). That is, we 
count those bubbles that are not refined further. For each functional primitive, each 
data ftow coming in or going out is marked with the number of tokens it carries. 
A token is essentially a data unit in the data ftow that is considered independently 
by this primitive. For example, if a data ftow is arecord consisting of five fields 
and each of the field needs to be separately examined in this functional primitive, 
then this data ftow arrow will be marked with the number 5. However, if the entire 
record is considered as a single unit inside the primitive, then it is considered to 
have only one token. If TC; is the total number of tokens involved in the primitive 
(i.e., going in or out along the data ftows), then the contribution of this primitive 
to the system size is corrected FP increment (CFPI), which is defined as: 

TCi *log2 TC; 
CFPl i = 2 
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The rationale behind this is that by taking log2' CFPI becomes proportional to the 
total number of bits needed to uniquely represent an the Teis. This defines the 
size of a primitive from the point of view of the number of data tokens it handles. 
However, it does not distinguish based on the computation the primitive does; two 
different primitives may perform different amounts of computation of more or less 
complexity even though they have the same number of tokens. This is handled by 
categorizing the primitives in 16 different types and assigning different complexity 
weights for each type. Some of the types, their meanings, and their weights are 
given next. For a complete list, the reader is referred to [DeM82]. 

• Separation or Amalgamation: Primitives that divide or combine incoming 
data items. Weight: 0.6. 

• Simple Update: Primitives that perform some updates. Weight: 0.5. 

• Verification: Primitives that perform consistency checks. Weight: 1.0. 

• Output Generation: Primitives involved in outputs. Weight: 1.0. 

• Arithmetic: Primitives that do simple arithmetic. Weight: 0.7. 

• Device Management: Primitives that control devices. Weight: 2.5. 

Each primitive is classified as belonging to one of the 16 categories. Then the CFPI 
of that primitive is multiplied by the weight of that category. This gives us the size 
of the primitive, taking into account the data it processes and the type of processing 
it does. The final metric of the system is 

i=N 

Bang = L CFPli * Wi, 

i=1 

where N is the total number of function primitives, CFPli is the CFPI of the ith 
primitive, and Wi is the complexity weight of the ith primitive. 

This metric is clearly more detailed than the function point metric, but it has a strong 
disadvantage; it assurnes the existence of a data flow diagram and data dictionary. 
With some changes, it can be used for data-oriented and hybrid systems [DeM82]. 
However, there is little data to suggest what type correlation this metric has with 
project parameters. Overall, as of now, it is more a proposed metric than one that 
is used commonly. 

3.5.2 Quality Metries 

As we have seen, the quality of the SRS has direct impact on the cost of the project. 
Hence, it is important to ensure that the SRS is of good quality. For this, some quality 
metrics are needed that can be used to assess the quality of the SRS. Quality of 
an SRS can be assessed either directly by evaluating the quality of the document 
by estimating the value of one or more of the quality attributes of the SRS, or 
indirectly, byassessing the effectiveness of the quality control measures used in 
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the development process during the requirements phase. Quality attributes of the 
SRS are generally hard to quantify, and little work has been done in quantifying 
these attributes and determining cortelation with project parameters. Hence, the 
use of these metrics is still limited. However, process based metrics are better 
understood and used more widely for monitoring and controlling the requirements 
phase of a project. 

Number 0/ Errors Found 

This is a process metric that is useful for assessing the quality of requirement 
specifications. The quality of the requirements is assessed by evaluating the effec
tiveness of the error detection process (which is generally requirement reviews). 
The number of errors found can be obtained from the requirement review report. 
The errors can be categorized into different types (we saw some categorizations 
earlier). 

Once the number of errors of different categories found during the requirement 
review of the project is known, some assessment can be made about the review 
process from the size of the project and historical data. This assessment is possible 
if the development process is under statistical control. In this situation, the error 
distribution during requirement reviews of a project will show a pattern similar to 
other projects executed following the same development process. From the pattern 
of errors to be expected for this process and the size of the current project (say, 
in function points), the volume and distribution of errors expected to be found 
during requirement reviews of this project can be estimated. The accuracy of these 
estimates depends on how well controlled the development process iso From these 
estimates, it can be determined whether or not the requirement review process was 
conducted properly (and whether or not further reviews should be scheduled). For 
example, if much fewer than expected errors were detected, it means that either the 
SRS was of very high-quality or the requirement reviews were not careful. Further 
analysis can reveal the true situation. If too many clerical errors were detected and 
too few omission type errors were detected, it might mean that the SRS was written 
poorly or that the requirements review meeting could not focus on "Iarger issues" 
and spent too much effort on "minor" issues. Again, further analysis will reveal 
the true situation.Similarly, a large number of errors that reftect ambiguities in the 
SRS can imply that the problem analysis has not been done properly and many 
more ambiguities may still exist in the SRS. Some project management decision 
to control this can then be taken (e.g., build a prototype or do further analysis). 

Clearly, review data about the number of errors and their distribution can be used 
effectively by the project manager to control quality of the requirements. From the 
historical data, a rough estimate of the number of errors that remain in the SRS after 
the reviews can also be estimated. This can be useful in the rest of the development 
process as it giv,es some handle on how many requirement errors should be revealed 
by later qualityassurance activities. 
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Change Request Frequency 

Requirements rarely stay unchanged. Change requests come from the clients (re
questing added functionality, a new report, or areport in a different format, for 
example) or from the developers (infeasibility, difficulty in implementing, etc.). 
The frequency of such change requests can be used as a metric. Its basic use is to 
assess the stability of the requirements and how many changes in requirements to 
expect during the later stages. 

Many organizations have formal methods for requesting and incorporating changes 
in requirements. Change data can be easily extracted from these formal change 
approval procedures. The frequency of changes can also be plotted against time. 
For most projects, the frequency decreases with time. This is to be expected; most 
of the changes will occur early, when the requirements are being analyzed and 
understood. During the later phases, requests for changes should decrease. 

For a project, if the change requests are not decreasing with time, it could mean 
that the requirements analysis has not been done properly. Frequency of change 
requests can also be used to "freeze" the requirements-when the frequency goes 
below an acceptable threshold, the requirements can be considered frozen and the 
design can proceed. The threshold has to be determined based on experience and 
historical data. 

Change data (such as in requirements, design, and coding) is used throughout the 
development cycle for project management. No general rules exist regarding how 
to use this data. The manner in which this data is to be used is likely to depend 
on the environment and culture ofthe developer's organization. This metric can be 
refined by introducing different categories of changes. 

SRS Quality Attributes 

The quality metrics discussed earlier are both process-based metrics. Some effort 
has recently been made to directly quantify some of the quality attributes of the 
SRS [D+93]. However, no studies have been done on these metrics and no data 
is available regarding their use. We briefly discuss a couple of these here. For 
measuring the unambiguity attribute ofthe SRS, specific data from the requirement 
reviews need to be collected. If during the reviews nui is the number of requirements 
all the reviewers interpreted in the same manner and n r is the total number of 
requirements, then the unambiguity quality attribute is defined as: 

nur 
Qu=-. 

n r 

For quantifying completeness, an SRS is considered complete if responses to all 
classes of input data are specified. (Extemal completeness, i.e., all user require
ments are included, is hard to quantify). This completeness definition implies that 
the function !(state, stimulus) ~ (state, response) is defined for all valid com-
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binations of state and stimulus. Suppose the number of inputs defined in the SRS 
is ni, the number of states defined (explicitly or implicitly) is ns , and the number 
of unique functions specified is n ll then the completeness quality attribute can be 
quantified as: 

n ll 
Qc=--. 

ni x ns 

This measures the percentage of necessary functions that have been specified. This 
metric does not capture completeness of nonfunctional requirements and will not 
work if the inputs or states are not specified completely. As stated earlier, these 
metrics represent an initial attempt to quantify some of the quality attributes of 
SRS and their significance has still not been established. In [D+93], 24 different 
attributes are defined, and methods for quantifying many of them are given. 

3.6 Summary 

Requirements specification is the starting step for the development activities. It 
is currently one of the weak areas of software engineering. During requirements 
specifications, the goal is to produce a document of the c1ient's requirements. This 
document forms the basis of development and software validation. The basic rea
son for the difficulty in software requirements specification comes from the fact 
that there are three interested parties-the c1ient, the end users, and the software 
developer. The requirements document has to be such that the c1ient and users can 
understand it easily and the developers can use it as a basis for software develop
ment. Due to the diverse parties involved in software requirements specification, 
a communication gap exists. This makes the task of requirements specification 
difficult. 

Given the nature of the problem, it has been c1aimed that there is nothing like a 
perfeet requirement [Dav93]. Hence a practical goal in the requirements phase is 
to get an SRS of reasonable quality. 

There are three basic activities in the requirements phase. The first is problem 
or requirement analysis. The goal of this activity is to understand such different 
aspects as the requirements ofthe problem, its context, and how it fits in the c1ient's 
organization. The second activity is requirements specification, during which the 
understood problem is specified or written, producing the SRS. And the third 
activity is to ensure that the requirements specified in the SRS are indeed what is 
desired. 

There are three main approaches to analysis; unstructured approaches rely on inter
action between the analyst, customer, and user to reveal all the requirements (which 
are then documented). The second is the modeling-oriented approach, in which a 
model of the problem is built based on the available information. The model is 
useful in determining if the understanding is correct and in ensuring that all the 
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requirements have been determined. Modeling may be function-oriented or object
oriented. The third approach is the prototyping approach in which a prototype is 
buHt to validate the correctness and completeness of requirements. 

To satisfy its goals, an SRS should possess certain characteristics. The require
ments specification should be complete in that all possible requirements should 
be specified. It should be consistent, with no conflicting requirements. The re
quirements should be verifiable, because eventually whether the software satisfies 
the requirement must be verified. This can only be done if the requirements are 
verifiable. The requirements specification should also be modifiable and traceable. 

To specify the requirements completely, a requirements specification should spec
ify certain properties ofthe software. First, the SRS should specify all the functions 
the software is supposed to support. Functional requirements essentially are the 
input/output behavior specification for the software. Secondly, the SRS should 
have performance requirements. All requirements relating to performance, such 
as response time, throughput, and number of concurrent users, should be c1early 
specified. Thirdly, the SRS should specify the design constraints (those factors 
that are not really features of the software but constrain the design). Examples of 
design constraints are standards compliance, operating environment, and hardware 
limitations. Finally, all the extemal interfaces of the software should be specified 
in the SRS. These should inc1ude the hardware, software, and human interfaces. 

It is important that the final requirements be validated before the next phase of 
software development starts. As far as possible, all errors from the requirements 
specifications should be removed before design commences. A number of methods 
exist for requirements validation. The most commonly used method is requirement 
review. In this technique, a team of persons, inc1uding a representative of the c1ient, 
reviews the requirements document and ensure that it is complete and consistent. 

The main metric of interest for requirements is some quantification of system 
size. As size is the main factor determining the cost of a project, an accurate 
size measure can then be used to estimate the cost and schedule of the project. 
The most commonly used size metric for requirements is the function points. 
The function point metric attempts to quantify the functionality of the system in 
terms of five parameters and their complexity levels which can be determined from 
the requirements of the system. Based on the count of these five parameters for 
different complexity levels, and the value of fourteen different environment factors, 
the function point count for a system is obtained. The function point metric can be 
used for estimating the cost of the system. 

1. What are the central problems in producing the SRS for a system? 
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2. Is it possible to have a system that can automatically verify completeness of 
an SRS document? Explain your answer. 

3. Construct an example of an inconsistent (incomplete) SRS. 

4. How can you specify the "maintainability" and "user friendliness" of a soft
ware system in quantitative terms? 

5. For a complete and unambiguous response time requirement, the environ
mental factors on which the response time depends must be specified. Which 
factors should be considered, and what units should be chosen to specify 
them? 

6. The basic goal of the requirements activity is to get an SRS that has some 
desirable properties. What is the role of modeling in developing such an SRS? 
List three major benefits that modeling provides, along with justifications, for 
achieving the basic goal. 

7. Make a friend ofyours as the c1ient. Perform structured analysis and object
oriented analysis for the following: 

(a) An electronic mail system. 

(b) A simple student registration system. 

(c) A system to analyze a person's diet. 

(d) A system to manage recipes for a household. 

(e) A system to fill tax forms for the current year tax laws. 

8. Write the SRS for the restaurant example whose analysis is shown in the 
chapter. 

9. In the example for the FSA given in the chapter, assume that a message can 
get lost during transmission, and a "time out" event occurs at each site to 
detect the loss of messages. Extend the FSA to model this new system. 

10. A library database contains entries that have the name of the book, followed 
by the author's name, the publisher's name and year of publication, the ISBN 
number of the book, and finally the number of copies of the book. Each of the 
data entries is on a new line. Represent this database as a regular expression. 

11. Consider the problem of developing software for controlling a small chemical 
plant. The plant has a number of emergency situations where specified actions 
have to be taken. Some of these are: (I) if the temperature exceeds TI, then 
the water shower is tumed on; (2) if the temperature is below T2, then the heat 
is tumed on; (3) if the pressure is above PI, the valve v I is opened, but if it is 
above P2 (P2>PI), then both values vI and v2 are opened; (4) ifthe chemical 
quantity is more than M and the temperature is more than T3, then the water 
shower is tumed on and a counter chemical is added; (5) if the pressure is 
above P2 and temperature is above Tl, then the water shower is tumed on, 
valves vI and v2 are opened, and alarm beIls are sounded. 
Write the requirements for this control system in the form of adecision table. 
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12. Develop a worksheet for calculating the function point for a given problem 
specification. 

13. Compute the function points for the restaurant example (can use the work
sheet). 

14. Take some quality attributes for the SRS and try to define so me metrics for 
quantifying them. 
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CASE STUDY 

Problem Analysis 

The computer science department in a university offers many courses every semes
ter, which are taught by many instructors. These courses are scheduled based on 
some policy directions of the department. Currently the scheduling is done man
ually, but the department would like to automate it. We have to first understand 
the problem (subject of this section), and then produce a requirements document 
(described in the next section) based on our understanding of the problem. First 
we identify the parties involved. 

Client: Chairman of the computer science department. 

End Users: Department secretary and instructors. 

Now we begin to study the current system. After speaking with the instructors, 
the department chairman, and the secretary, we found that the system operates as 
follows. Each instructor specifies, on a sheet of paper, the course he is teaching, 
expected enrollment, and his preferences for lecture times. These preferences must 
be valid lecture times, which are specified by the department. These sheets are given 
to the department secretary, who keeps them in the order they are received. After 
the deadline expires, the secretary does the scheduling. Copies ofthe final schedule 
are sent to the instructors. The overall DFD for the system is shown in Figure 3.20. 

This DFD was discussed with the chairman and the department secretary and ap
proved by them. We now focus on the scheduling process, which is our main inter
est. From the chairman we found that the two major policies regarding scheduling 
are: (1) the post-graduate (PG) courses are given preference over undergraduate 
(UG) courses, and (2) no two PG courses can be scheduled at the same time. 

The department secretary was interviewed at length to find out the details of the 
scheduling activity. The schedule of the last few semesters, together with their 
respective inputs (i.e., the sheets) were also studied. It was found that the basic 
process is as follows. The sheets are separated into three piles-one for PG courses 
with preferences, one for UG courses with preferences, and one for courses with 

Collected 
Forms 

Schedule 

FIGURE 3.20. Top-level DFD for the current scheduling system. 
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UG-Courses 

Courses Without Preferences 

FIGURE 3.21. The DFD for the schedule process. 

no preference. The order of the sheets in the three piles was maintained. First the 
courses in the PG pile were scheduled and then the courses in the UG pile were 
scheduled. The courses were scheduled in the order they appeared in the pile. 
During scheduling no backtracking was done, Le., once a course is scheduled, the 
scheduling of later courses has no effect on its schedule. After all the PG and UG 
courses with preferences were processed, courses without any preferences were 
scheduled in the available slots. It was also found that information about classrooms 
and the department-approved lecture times was tacitly used during the scheduling. 
The DFD for the schedule process is shown in Figure 3.21. 

The secretary was not able to explain the algorithm used for scheduling. It is likely 
that some hit-and-miss approach is being followed. However, while scheduling, 
the following was being checked: 

1. Classroom capacity is sufficient for the course. 

2. A slot for a room is never allotted to more than one course. 

The two basic data flows are the sheets containing preferences and the final sched
ule. The data dictionary entry for these is shown in Figure 3.22. 

Now we have to define the DFD for the new or future automated system. Au
tomating scheduling can affect the preference collection method, so boundaries 

collected_forms = 

[ instructor Jlame + 
courseJlumber + 
[preferences]* ] 

schedule = 

[courseJlumber classJoom lecture_time]* 

FIGURE 3.22. Data dictionary for the scheduling 
system. 
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of change include the entire system. After discussion with the chairman, the in
structors, and the secretary, the following decisions were taken regarding what the 
automated system should do and what the new environment should be: 

1. The preferences will be electronically mailed to the secretary by the instruc
tors. The secretary will put these preferences for different courses in a file in 
the order in which they are received. The secretary will also make entries for 
all courses for which no response has been given before the deadline. Entries 
for these courses will have no preferences. 

2. The format for each course entry should be similar to the one cUITently being 
used. 

3. Entries might have eITors, so the system should be able to check for eITors. 

4. The CUITent approach for scheduling should be followed. However, the system 
should make sure that scheduling of VG courses does not make a PG course 
without any preference unschedulable. This is not being done cUITently, but 
is desired. 

5. A reason for unschedulability should be given for the preferences that are not 
satisfied or for courses that cannot be scheduled. 

6. Information about department courses, classrooms, and valid lecture times 
will be kept in a file. 

The DFD forthe new logical system (one with automation) is shown in Figure 3.23. 
The two important data entities are the two files in the DFD. The data dictionary 
entry for these is given in Figure 3.24. 

It is decided that the scheduling process will be automated. The rest (such as 
combining preferences) will be done manually. Based on the format cUITently used 
in the sheets, a detailed format for the course entries was decided and approved 
by the instructors. A detailed format for the depLDB file was also chosen and 

Prefs-File 

into 
File \ 

, , 
\ 

Conflict 
Report 

/"" ___ ----/ Schedule 

Man-Machine ~ 
Boundary Dept-DB 

FIGURE 3.23. DFD for the new system. 

Instructors, 
Secretary, 
Chairman 
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courseJ1umber + enrollment + [preferences]* 

depLDB = 
[classJooms]* + 
depLcourseJist + 
[ valid_Iecture_time] * 

classJooms = 

room_no + capacity 

FIGURE 3.24. Data dictianary entry far files in the DFD. 

approved. The final formats and the requirements are given in the requirements 
document. 

Requirements Specification Document 

Abstract: This is the requirements document for the case study that will be used 
throughout the book. The system to be developed is for scheduling the courses 
in a computer science department, based on the input about classrooms, lecture 
times, and time preferences of the different instructors. Different conditions have 
to be satisfied by the final schedule. This document follows the IEEE standard for 
a requirements specification document, with some variations. 

1. Introduction 

1.1. Purpose 

The purpose of this document is to describe the extemal requirements for a course 
scheduling system. It also describes the interfaces for the system. 

1.2. Scope 

This document is the only one that describes the requirements of the system. It 
is meant for use by the developers and will be the basis for validating the final 
delivered system. Any changes made to the requirements in the future will have 
to go through a formal change approval process. The developer is responsible for 
asking for clarifications, where necessary, and will not make any alterations without 
the permission of the client. 
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1.3. Definitions, Acronyms, Abbreviations 

Not applicable. 

1.4. References 

Not applicable. 

1.5. Developer's Responsibilities Overview 

The developer is responsible for (a) developing the system, (b) installing the soft
ware on the client's hardware, (c) conducting any user training that might be needed 
for using the system, and (d) maintaining the system for a perlod of one year after 
installation. 

2. General Description 

2.1. Product Functions Overview 

In the computer science department there are a set of classrooms. Every semester the 
department offers courses, which are chosen from the set of department courses. A 
course has expected enrollment and could be for graduate students or undergraduate 
students. For each course, the instructor gives some time preferences for lectures. 

The system is to produce a schedule for the department that specifies the time and 
room assignments for the different courses. Preference should be given to graduate 
courses, and no two graduate courses should be scheduled at the same time. If 
some courses cannot be scheduled, the system should produce a "conftict report" 
that lists the courses that cannot be scheduled and the reasons for the inability to 
schedule them. 

2.2. User Characteristics 

The main users of this system will be department secretaries, who are somewhat 
literate with computers and can use programs such as editors and text processors. 

2.3. General Constraints 

The system should run on Sun 3/50 workstations running UNIX 4.2 BSD. 

2.4. General Assumptions and Dependencies 

Not applicable. 
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3. Specific Requirements 

3.1. Inputs and Outputs 

The system has two file inputs and produces three types of outputs. These are 
described here. 

InpuLfile_l: Contains the list of room numbers and their capacity; a list of all the 
courses in the department catalog; and the list of valid lecture times. The format 
of the file is: 

"rooms" 
rooml ":" capl 
room2 ":" cap2 

11.11 , 
"courses" 

course 1 "," course2 "," course3 "," .... ";" 
"times" 

timel "," time2 "," time3 ";" 

where rooml and room2 are room numbers with three digits, with a maximum of 
20 rooms in the building; capl and cap2 are room capacities within the range [10, 
300]; course 1 , course2 are course numbers, which are ofthe form "csddd," where 
dis a digit. There are no more than 30 courses. timel and time2 are valid lecture 
times of the form "MWFd" or "MWFdd" or "TTd" or "TTd:dd" or "TTdd:dd". 
There are no more than 15 such valid lecture times. An example ofthis file is: 

rooms 
101: 25 
115: 50 
200: 250; 

courses 
cslOl,csl02,csllO,cs120,cs220,cs412,cs430,cs612,cs630; 

times 
MWF9, MWFlO, MWF11, MWF2, TT9, TTlO:30, TT2, TT3:30 ; 

InpuLfile.2: Contains information about the courses being offered. For each course, 
it specifies the course number, expected enrollment, and a number of lecture time 
preferences. A course number greater than 600 is a post-graduate course; the rest 
are undergraduate courses. The format of this file is: 

"course 
c#l 
c#2 

enrollment 
capl 
cap2 

preferences" 
prel "," pre2 "," pre3 .. . 
prel "," pre2 "," pre3 .. . 



www.manaraa.com

156 3. Software Requirements Analysis and Specification 

where c#1 and c#2 are valid course numbers; capl and cap2 are integers in the 
range [3 .. 250]; and prel, pre2, and pre3 are time preferences of the instructor (a 
maximum of 5 preferences are allowed for a course). An example of this file is 

course 
csl0l 
cs412 
cs612 
cs630 

enrollment 
180 
80 
35 
40 

preferences 
~9,~10,~11, ~9 

MWF9, ~9, TTlO:30 

OutpuU: The schedule specifying the class number and time of all the schedulable 
courses. The schedule should be a table having the lecture times on the x-axis and 
classroom numbers on the y-axis. For each slot (i.e., lecture time, classroom) the 
course scheduled for it is given; if no course is scheduled the slot should be blank. 

Output-2: List of courses that could not be scheduled and why. For each preference, 
the reason for inability to schedule should be stated. An example is: 

cs612: Preference 1: Conftict with cs600. 
Preference 2: No room with proper capacity. 

Output3: Error messages. At the minimum, the following error messages are to 
be given: 

el. Input file does not exist. 
e2. Input-file-1 has error 

e2.1. The course number has wrong format 
e2.2. Some lecture time has wrong format. 
e2.3. Classroom number has wrong format. 
e2.4. Classroom capacity out of range. 

e3. Input-file-2 has error 
e3.1. No course of this number. 
e3.2. No such lecture time. 

e4. More than permissible courses in the file; later ones ignored. 
e5. There are more than permissible preferences; later ones are ignored. 

3.2. Functional Requirements 

1. Determine the time and room number for the courses such that the following 
constraints are satisfied: 
(a) No more than one course should be scheduled at the same time in the 

same room. 

(b) The classroom capacity should be more than the expected enrollment of 
the course. 

(c) Prefe~ence is given to post-graduate courses over undergraduate courses 
for scheduling. 
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(d) The post-graduate (undergraduate) courses should be scheduled in the 
order they appear in the input file, and the highest possible priority of an 
instructor should be given. If no priority is specified, any class and time 
can be assigned. If any priority is incorrect, it is to be discarded. 

(e) No two post-graduate courses should be scheduled at the same time. 

(f) If no preference is specified for a course, the course should be scheduled 
in any manner that does not violate these constraints. 

Inputs: InpuLfile_l and InpuLfile_2. 
Outputs: Schedule. 

2. Produce a list of all courses that could not be scheduled because some 
constraint(s) could not be satisfied and give reasons for unschedulability. 
Inputs: InpuLfile_l, and InpuLfile_2. 
Outputs: Output-.2, i.e., list of unschedulable courses and preferences and 
why. 

3. The data in inpuLfile_2 should be checked for validity against the data pro
vided in inpuLfile_l. Where possible, the validity of the data in inpuLfile_l 
should also be checked. Messages should be given for improper input data, 
and the invalid data item should be ignored. 
Inputs: InpuLfile_l and InpuLfile_2. 
Outputs: Error messages. 

3.3. External Interface Requirements 

User Interface: Only one user command is required. The file names can be spec
ified in the command line itself or the system should prompt for the input file 
names. 

3.4. Performance Constraints 

[1]. For inpuLfile_2 containing 20 courses and up to 5 preferences for each course, 
the reports should be printed in less than 1 minute. 

3.5. Design Constraints 

3.5.1. Software Constraints 
The system is to ron under the UNIX operating system. 

3.5.2. Hardware Constraints 

The system will ron on a Sun workstation with 16 MB RAM, ronning UNIX. It 
will be conneeted to an 8-page-per-minute printer. 
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3.6. Acceptance Criteria 

Before accepting the system, the developer must demonstrate that the system works 
on the course data for the last 4 semesters. The developer will have to show through 
test cases that all conditions are satisfied. 
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Planning a Software Project 

Software development is a highly labor-intensive activity. A large software project 
may involve hundreds of people and span many years. A project of this dimen
sion can easily turn into chaos if proper management controls are not imposed. 
To complete the project successfully, the large workforce has to be properly or
ganized so that the entire workforce is contributing effectively and efficiently the 
project. Proper management controls and checkpoints are required for effective 
project monitoring. Controlling the development, ensuring quality, satisfying the 
constraints of the selected process model all require careful management of the 
project. 

For a successful project, competent management and technical staff are both es
sential. Lack of any one can cause a project to fail. Traditionally, computer pro
fessionals have attached little importance to management and have placed greater 
emphasis on technical skills. This is one of the reasons there is a shortage of com
petent project managers for software projects. Although the actual management 
skills can only be acquired by actual experience, some of the principles that have 
proven to be effective can be taught. 

We have seen that project management activities can be viewed as having three 
major phases: project planning, project monitoring and control, and project ter
mination. Broadly speaking, planning entails all activities that must be performed 
before starting the development work. Once the project is started, project control 
begins. In other words, during planning all the activities that management needs to 
perform are planned, while during project control the plan is executed and updated. 

Planning may be the most important management activity. Without a proper plan, 
no real monitöring or controlling of the project is possible. Planning mayaiso be 
perhaps the weakest activity in many software projects, and many failures caused 
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by mismanagement can be attributed to lack of proper planning. One of the reasons 
for improper planning is the old thinking that the major activity in a software project 
is designing and writing code. Consequently, people who make software tend to 
rush toward implementation and do not spend time and effort planning. No amount 
of technical effort later can compensate for lack of careful planning. Lack of proper 
planing is a sure ticket to failure for a large software project. For this reason, we 
treat project planning as an independent chapter. 

The basic goal of planning is to look into the future, identify the activities that 
need to be done to complete the project successfully, and plan the scheduling 
and resource allocation for these activities. Ideally, all future activities should 
be planned. A good plan is flexible enough to handle the unforeseen events that 
inevitably occur in a large projecl. Economic, political, and personnel factors should 
be taken into account for a realistic plan and thus for a successful projecl. 

The input to the planning activity is the requirements specification. A very detailed 
requirements document is not essential for planning, but for a good plan all the 
important requirements must be known. The output of this phase is the project plan, 
which is a document describing the different aspects of the plan. The project plan 
is instrumental in driving the development process through the remaining phases. 
The major issues the project plan addresses are: 

Cost estimation 
Schedule and milestones 
Personnel plan 
Software quality assurance plans 
Configuration management plans 
Project monitoring plans 
Risk management 

In the rest of this chapter we will discuss each of these issues and the techniques 
available for handling the problems in different aspects of project planning. 

4.1 Cast Estimatian 

For a given set of requirements it is desirable to know how much it will cost 
to develop the software to satisfy the given requirements, and how much time 
development will take. These estimates are needed belore development is initiated. 
The primary reason for cost and schedule estimation is to enable the client or 
developer to perform a cost-benefit analysis and for project monitoring and contro!. 
A more practical use of these estimates is in bidding for software projects, where 
the developers ~ust give cost estimates to a potential client for the development 
contract. 
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For a software development project, detailed and accurate cost and schedule esti
mates are essential prerequisites for managing the project. Otherwise, even simple 
questions like "is the project late," '''are there cost overruns," and "when is the 
project likely to complete" cannot be answered. Cost and schedule estimates are 
also required to determine the staffing level for a project during different phases. 
It can be safely said that cost and schedule estimates are fundamental to any form 
of project management and are generally always required for a project. 

Cost in a project is due to the requirements for software, hardware, and human re
sources. Hardware resources are such things as the computer time, terminal time, 
and memory required for the project, whereas software resources include the tools 
and compilers needed during development. The bulk of the cost of software devel
opment is due to the human resources needed, and most cost estimation procedures 
focus on this aspect. Most cost estimates are determined in terms of person-months 
(PM). By properly including the "overheads" (i.e., the cost ofhardware, software, 
office space, etc.) in the dollar cost of a person-month, besides including the direct 
cost of the person-month, most costs for a project can be incorporated by using 
PM as the basic measure. 

Estimates can be based on subjective opinion of some person or determined through 
the use of models. Though there are approaches to structure the opinions of persons 
for achieving a consensus on the cost estimate (e.g., the Delphi approach [Boe81]), 
it is generally accepted that it is important to have a more scientific approach to 
estimation through the use of models. In this section we discuss only the model
based approach for cost estimation. Before we discuss the models, let us first 
understand the 1imitations of any cost estimation procedure. 

4.1.1 Uncertainties in Cast Estimatian 

One can perform cost estimation at any point in the software life cycle. As the cost 
of the project depends on the nature and characteristics of the project, at any point, 
the accuracy of the estimate will depend on the amount of reIiable information we 
have about the final product. Clearly, when the product is delivered, the cost can be 
accurately determined, as all the data about the project and the resources spent can 
be fully known by then. This is cost estimation with complete knowledge about 
the project. On the other extreme is the point when the project is being initiated 
or during the feasibility study. At this time, we have only some idea of the classes 
of data the system will get and produce and the major functionality of the system. 
There is agreat deal of uncertainty about the actual specifications of the system. 
Specifications with uncertainty represent a range of possible final products, not 
one precisely defined product. Hence, the cost estimation based on this type of 
information cannot be accurate. Estimates at this phase of the project can be off by 
as much as a factor of four from the actual final cost. 
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FIGURE 4.1. Accuracy of cost estimation [Boe81]. 

As we specify the system more fully and accurately, the uncertainties are reduced 
and more accurate cost estimates can be made. For example, once the requirements 
are completely specified, more accurate cost estimates can be made compared to 
the estimates after the feasibility study. Once the design is complete, the estimates 
can be made still more accurately. The obtainable accuracy of the estimates as it 
varies with the different phases is shown in Figure 4.1 [Boe81, Boe84b]. 

Note that this figure is simply specifying the limitations of cost estimating strate
gies-the best accuracy a cost estimating strategy can hope to achieve. It does not 
say anything about the existence of strategies that can provide the estimate with 
that accuracy. For actual cost estimation, cost estimation models or procedures 
have to be developed. The accuracy of the actual cost estimates will depend on the 
effectiveness and accuracy of the cost estimation procedures or models employed 
and the process (i.e., how predictable it is). As mentioned earlier, we will limit our 
attention to cost estimation models and will not discuss other approaches to cost 
estimation. 

Despite the limitations, cost estimation models have matured considerably and 
generally give fflirly accurate estimates. For example, when the COCOMO model 
(discussed later) was checked with data from some projects, it was found that the 
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estimates were within 20% of the actual cost 68% of the time. It should also be 
mentioned that achieving a cost estimate after the requirements have been specified 
within 20% is actually quite good. With such an estimate, there need not even be 
any cost and schedule overruns, as there is generally enough slack or free time 
available (recall the study mentioned earlier that found a programmer spends more 
than 30% of his time in personal or miscellaneous tasks) that can be used to meet 
the targets set for the project based on the estimates. In other words, if the estimate 
is within 20%, the effect of this inaccuracy will not even be reftected in the final 
cost and schedule. 

4.1.2 Building Cost Estimation Models 

Let us turn our attention to the nature of cost estimation models and how these 
models are built. Any cost estimation model can be viewed as a "function" that 
outputs the cost estimate. As the cost of a project (for the process that is to be 
followed) depends on the nature of the project, c1early this cost estimation function 
will need inputs about the project, from which it can produce the estimate. The basic 
idea ofhaving a model or procedure for cost estimation is that it reduces the problem 
of estimation to estimating or determining the value of the "key parameters" that 
characterize the project, based on which the cost can be estimated. The problem of 
estimation, not yet fully solved, is determining the "key parameters" whose value 
can be easily determined (especially in the early phases) and how to get the cost 
estimate from the value of these. 

Though the cost for a project is a function of many parameters, it is generally agreed 
that the primary factor that controls the cost is the size of the project, that is, the 
larger the project, the greater the cost and resource requirement. Other factors that 
affect the cost inc1ude programmer ability, experience of the developers in the area, 
complexity of the project, and reliability requirements. In some studies it has been 
found that programmer ability can have productivity variations of up to a factor 
of ten. Product complexity has an effect on development effort, as more complex 
projects that are the same size as simpler projects require more effort. Similarly, 
reliability requirements have considerable impact on cost; the more the reliability 
need, the higher the development cost. In fact, the cost increase with reliability is 
not linear and is often exponential. 

The goal of a cost model is to determine which of these many parameters have 
a "significant" effect on cost and then to discover the relationships between the 
cost and these characteristics. These characteristics should be such that we can 
measure or estimate them accurately. The most common approach for determining 
the significant parameters and their relationship to cost is to build models through 
regression analysis (model building was discussed in Chapter 2), where cost is the 
dependent variable and the parameters are the independent variables. 
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As this approach uses historical data to predict future data points, this approach 
has one clear implication. This approach can be applied only if the process is under 
statistical contro!. If this is not the case, then the past is no reflection of the future, 
and a regression-type model cannot be used. It also follows that the cost models 
are process-dependent, as they should be; the cost of developing a software is more 
if an inefficient process is followed. 

The most common approach for estimating effort is to make it a function of a single 
variable (this is also the simplest from the point of view of model building). Often 
this variable is the project size, and the equation of effort is considered 

EFFORT = a * SIZEb , 

where a and bare constants [Bas80]. As discussed in the previous chapter, values for 
these constants for a particular process are determined through regression analysis, 
which is applied to data about the projects that has been performed in the past. For 
example, Watson and Felix [WF77] analyzed the data of more than 60 projects done 
at IBM Federal Systems Division, ranging from 4000 to 467,000 lines of delivered 
source code, and found that if the size estimate is in thousands of delivered lines 
of code (KDLOC), the total effort, E, in person-months (PM) can be given by the 
equation 

E = 5.2(KDLOC)-91. 

A similar study on smaller projects showed that the data fits a straight line quite 
weIl, and the equation is of the form 

EFFORT = a * SIZE + b, 

where a and b are again constants obtained by analysis of data of past projects 
[Bas80]. These equations suggest that the project cost increases linearly with the 
size of the final product for small systems but has nonlinear growth for larger 
projects. 

These models have used LOC as the size measure. Similar models have been 
developed with function point as the size measure [MBM94]. The process of con
structing the model is the same-regression analysis on function point size and 
cost of previously completed projects. An advantage of using function points is 
that the size in FP can be calculated, while size in LOC will require size estimation 
be done. However, function point calculation, as discussed in the previous chapter, 
also involves subjectivity. Due to this, the FP count is not uniquely determined even 
at the end of the project, unlike the LOC count, which makes the task of getting 
accurate and consistent data on past projects harder. Note that most of these models 
will not work for very small projects because for such projects factors other than 
size become far more important. 
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4.1.3 On Size Estimation 

Though the single-variable cost models with size as the independent variable result 
in simple-Iooking models that can be easily obtained from completed projects (for 
which accurate data about size and cost are known), applying them for estimation 
is not simple. The reason is that these models now require size as the input, and 
size of the project is not known early in development (when the estimates are most 
needed) and has to be estimated. This is particularly true if LOC is used as the 
measure of size in the model. 

So, in asense, by using size as the main input to the cost model, we have replaced 
the problem of cost estimation by size estimation. One may then ask, why not 
directly do cost estimation rather than size estimation? Because size estimation is 
generally easier than effort estimation. For estimating size, the system is generally 
partitioned into components it is likely to have. Once the components of the system 
are known, as estimating something about a small unit is generally much easier than 
estimating it for a larger system, sizes of components can be generally estimated 
quite accurately. Once size estimates for components are available, to get the overall 
size estimate for the system, the estimates of all the components can be added up. 
Similar property does not hold for cost estimation, as cost of developing a system 
is not the sum of costs of developing the components (there are integration and 
other costs involved when building a system from developed components). This 
key feature, that the system property is the sum of the properties of its parts, holds 
for size but not for cost, and is the main reason that size estimation is easier than 
cost estimation. For this reason, most cost estimation models, use size estimates in 
some form. 

With the size-based models, if the size estimate is inaccurate, the cost estimate 
produced by the models will also be inaccurate. Hence, it is important that good 
estimates for the size of the software be obtained. There is no known "simple" 
method for estimating the size accurately. In general, there is often a tendency 
by people to underestimate the size of software. There are many reasons for this 
[Boe81]. First, people are basically optimistic and have adesire to please others. 
The way to pie ase others and avoid confrontations in this case is to give a low 
estimate. Most people give estimates based on previous experiences with similar 
projects. However, people do not tend to remember their experience completely. 
Often they tend not to remember the software developed for housekeeping and user 
interfacing or the support software developed for a project. 

When estimating software size, the best way may be to get as much detail as 
possible about the software to be developed and to be aware of our biases when 
estimating the size ofthe various components. By obtaining details and using them 
for size estimation, the estimates are likely to be c10ser to the actual size of the 
final software. 
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4.1.4 COCOMO Model 

Instead of having resource estimates as a function of one variable, resource esti
mates can depend on many different factors, giving rise to multivariable models. 
One approach for building multivariable models is to start with an initial estimate 
determined by using the static single-variable model equations, which depend on 
size, and then adjusting the estimates based on other variables. This approach im
plies that size is the primary factor for cost; other factors have a lesser effect. Here 
we will discuss one such model called the COnstructive COst MOdel (COCOMO) 
developed by Boehm [Boe81, Boe84b]. This model also estimates the total effort in 
terms of person-months of the technical project staff. The effort estimate inc1udes 
development, management, and support tasks but does not inc1ude the cost of the 
secretarial and other staff that might be needed in an organization. The basic steps 
in this model are: 

1. Obtain an initial estimate of the development effort from the estimate of 
thousands of delivered lines of source code (KDLOC). 

2. Determine a set of 15 multiplying factors from different attributes of the 
project. 

3. Adjust the effort estimate by multiplying the initial estimate with all the 
multiplying factors. 

The initial estimate (also called nominal estimate) is determined by an equation of 
the form used in the static single-variable models, using KDLOC as the measure 
of size. To determine the initial effort Ei in person-months the equation used is of 
the type Ei = a * (KDLOC)b. 

The value of the constants a and b depend on the project type. In COCOMO, 
projects are categorized into three types--organic, semidetached, and embedded. 
Organic projects are in an area in which the organization has considerable experi
ence and requirements are less stringent. Such systems are usually developed by 
a small team. Examples of this type of project are simple business systems, sim
ple inventory management systems, and data processing systems. Projects of the 
embedded type are ambitious and novel; the organization has little experience and 
stringent requirements for such aspects as interfacing and reliability. These sys
tems have tight constraints from the environment (software, hardware, and people). 
Examples are embedded avionics systems and real-time command systems. The 
semidetached systems fall between these two types. Examples of semidetached 
systems include developing a new operating system (OS), a database management 
system (DBMS), and a complex inventory management system. The constants a 
and b for different systems are given in Table 4.1. 

There are 15 different attributes, called cost driver attributes, that determine the 
multiplying factors. These factors depend on product, computer, personnel, and 
technology attrib,utes (called project attributes). Examples of the attributes are 
required software reliability (RELY), product complexity (CPLX), analyst capa-
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System a b 

Organic 3.2 1.05 

Semidetached 3.0 1.12 
Embedded 2.8 1.20 

TABLE 4.1. Constants for different project types. 

Rating 

Cost Drivers Very Low Nom- High Very 
Low inal High 

Product Attributes 
RELY, required reliability .75 .88 1.00 1.15 1.40 
DATA, database size .94 1.00 1.08 1.16 
CPLX, product comp1exity .70 .85 1.00 1.15 1.30 
Computer Attributes 
TIME, execution time constraint 1.00 1.11 1.30 
STOR, main storage constraint 1.00 1.06 1.21 
VITR, virtua1 machine vo1atility .87 1.00 1.15 1.30 
TURN, computer tumaround time .87 1.00 1.07 1.15 
Personnel Attributes 
ACAP, analyst capability 1.46 1.19 1.00 .86 .71 
AEXP, application experience 1.29 1.13 1.00 .91 .82 
PCAP, programmer capability 1.42 1.17 1.00 .86 .70 
VEXP, virtua1 machine experience 1.21 1.10 1.00 .90 
LEXP, programming 1anguage experience 1.14 1.07 1.00 .95 
Project Attributes 
MODP, modem programming practices 1.24 1.10 1.00 .91 .82 
TOOL, use of SW tools 1.24 1.10 1.00 .91 .83 
SCHED, deve10pment schedule 1.23 1.08 1.00 1.04 1.10 

TABLE 4.2. Effort multipliers for different cost drivers. 

bility (ACAP), application experience (AEXP), use of modem tools (TOOL), and 
required development schedule (SCHD). Each cost driver has a rating scale, and for 
each rating, a multiplying factor is provided. For exampIe, for the product attribute 
RELY, the rating sca1e is very low,low, nominal, high, and very high (and in some 
cases extra high). The multiplying factors for these ratings are .75, .88, 1.00, 1.15, 
and 1.40, respectively. So, if the reliability requirement for the project is judged 
to be low thetl the multiplying factor is .75, while if it is judged to be very high 
the factor is 1 ;40. The attributes and their multiplying factors for different ratings 
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are shown in Table 4.2 [Boe81, Boe84b]. The COCOMO approach also provides 
guidelines for assessing the rating for the different attributes [Boe8l]. 

The multiplying factors for all 15 cost drivers are multiplied to get the effort 
adjustment factor (EAF). The final effort estimate, E, is obtained by multiplying 
the initial estimate by the EAF: 

As we discussed earlier, the value of the constants for a cost model depend on 
the process and thus have to be determined from past data about the usage of that 
process. COCOMO has instead provided "global" constant values. This might work 
because it requires so me characteristics about the process (e.g., it is weIl managed), 
and it provides some means to fine-tune the estimate for a particular process. For 
example, if the process relies less on tools, the estimate can be "corrected" for this 
type of process by suitably choosing the value for the TOOL attribute. 

Still, there is littIe data to support that these constants are giobally applicable, and to 
apply COCOMO in an environment, these may need to be tailored for the specific 
environment. One way is to start with the COCOMO-supplied constants until data 
for some completed projects is available. With this data, by keeping the exponent 
in the equations for initial effort estimate fixed, the value of the other constant can 
be determined through regression analysis so that the data best fits the equation. 
This will be a simpler regression analysis as only one constant has to be determined 
rather than two in the standard regression line fitting discussed earlier. With more 
data, the value of the exponent can also be fine-tuned. Changing both constants 
together requires a lot more data for regression analysis to be significant. For a 
particular process or environment, all the attributes might not be significant, and it 
might be possible to merge some of them into a single attribute. For further details 
on adapting COCOMO for a particular environment, based on data analysis, the 
reader is referred to [Boe8l]. 

By this method, the overall cost of the project can be estimated. For planning and 
monitoring purposes, estimates of the effort required for the different phases is 
also desirable. In COGOMO, effort for a phase is considered a defined percentage 
of the overall effort. The percentage of total effort spent in a phase varies with the 
type and size of the project. The percentages for an organic software project are 
given in Table 4.3. 

Using this table, the estimate of the effort required for each phase can be deter
mined from the total effort estimate. For example, if the total effort estimate for an 
organic software system is 20 PM, then the percentage effort for the coding and 
unit testing phase will be 40+ (38 - 40)/(32 - 8) * 20 = 39%. The estimate for the 
effort needed for this phase is 7.8 PM. This table does not list the cost of require
ments as a perc~ntage of the total cost estimate because the project plan (and cost 
estimation) is b~ing done after the requirements are complete. In COCOMO the 
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Size 

Phase Small Intermediate Medium Large 
2KDLOC 8KDLOC 32KDLOC 128 KDLOC 

Product design 16 16 16 16 
Detailed design 26 25 24 23 
Code and unit test 42 40 38 36 
Integration and test 16 19 22 25 

TABLE 4.3. Phase-wise distribution of effort. 

detailed design and code and unit testing are sometimes combined into one phase 
called the programming phase. 

For the other two types of software systems, the percentages are slightly differ
ent, with the percentage for product design and integration and testing increasing 
slightly and the percentage of coding decreasing slightly. The reader is referred to 
[Boe81] for further details. An estimate of percentages for project sizes different 
from the one specified in the table can be obtained by linear interpolation. 

Besides phase-wise estimates, the model can be used to estimate the cost of different 
components or subsystems of the system. For details of this, the reader is referred 
to [Boe81]. 

COCOMO provides three levels of models of increasing complexity: basic, inter
mediate, and detailed. The model described earlier is the intermediate COCOMO 
model. The detailed model is the most complex. It has different multiplying factors 
for the different phases for a given cost driver. The set of cost drivers applicable to a 
system or module is also not the same as the drivers for the system level. However, it 
might be too detailed for many applications. We will follow the intermediate model 
described earlier, even for detailed estimates. COCOMO also provides help in de
termining the rating of different attributes and performing sensitivity and trade-off 
analysis. 

4.1.5 An Example 

Suppose a system for office automation must be designed. From the requirements, 
it was c1ear that there will be four major modules in the system: data entry, data 
update, query, and report generator It is also c1ear from the requirements that this 
project will faH in the organic category. The sizes for the different modules and the 
overall system were estimated to be 
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Data Entry 
Data Update 
Query 
Reports 
TOTAL 

0.6KDLOC 
0.6KDLOC 
0.8KDLOC 
1.0KDLOC 
3.0KDLOC 

From the requirements, the ratings of the different cost driver attributes were 
assessed. These ratings, along with their multiplying factors, are: 

Complexity 
Storage 
Experience 
Programmer Capability 

High 
High 
Low 
Low 

1.15 
1.06 
1.13 
1.17 

All other factors had a nominal rating. From these, the effort adjustment factor 
(EAF) is 

EAF = 1.15 * 1.06 * 1.13 * 1.17 = 1.61. 

The initial effort estimate for the project is obtained from the relevant equations. 
Wehave 

Ei = 3.2 * 31.05 = 10.14 PM. 

Using the EAF, the adjusted effort estimate is 

E = 1.61 * 10.14 = 16.3 PM. 

Using the preceding table, we obtain the percentage of the total effort consumed 
in different phases. The office automation system's size estimate is 3 KDLOC, so 
we will have to use interpolation to get the appropriate percentage (the two end 
values for interpolation will be the percentages for 2 KDLOC and 8 KDLOC). The 
percentages for the different phases are: design-16%, detailed design-25.83%, 
code and unit test-41.66%, and integration and testing-16.5%. With these, the 
effort estimates for the different phases are: 

System Design 
Detailed Design 
Code and Urlit Test 
Integration 

.16 * 16.3 = 2.6 PM 

.258 * 16.3 = 4.2 PM 

.4166 * 16.3 = 6.8 PM 

.165 * 16.3 = 2.7 PM. 

These effort estimates will be used later during personnel planning. 

4.2 Project Scheduling 

Schedule estimation and staff requirement estimation may be the most important 
activities after cost estimation. Both are related, if phase-wise cost is available. 



www.manaraa.com

4.2. Project Scheduling 171 

Here we discuss the schedule estimation. The goal of schedule estimation is to 
determine the total duration of the project and the duration of the different phases. 

First, let us see why the schedule is independent of the person-month cost. A 
schedule cannot be simply obtained from the overall effort estimate by deciding 
on average staff size and then determining the total time requirement by dividing 
the total effort by the average staff size. Brooks has pointed out that person and 
months (time) are not interchangeable. According to Brooks [Br075], " ... man 
and months are interchangeable only for activities that require no communication 
among men, like sowing wheat or reaping cotton. This is not even approximately 
true of software .... " 

Obviously, there is some relationship between the project duration and the total 
effort (in person-months) required for completing the project. But this relation
ship is not linear; to halve the project duration, doubling the staff-months will not 
work. The basic reason behind this is that if the staff needs to communicate for the 
completion of a task, then communication time should be accounted for. Commu
nication time increases with the square of the number of staff. For example, if there 
are n persons and all need to communicate, then there are n2 communication paths 
and each communication path consumes time. Hence, by increasing the staff for a 
project we may actually increase the time spent in communication. This is often 
restated as Brook's law: "adding manpower to a late project may make it later." 

From this discussion it is dear that we cannot treat the schedule as a variable 
totally in control of management. Each project will require some time to finish, 
and this time cannot be reduced by putting more people on the project. Hence, 
project schedule is an independent variable, which must be assessed for planning. 
Models are used to assess the project duration. 

4.2.1 Average Duration Estimation 

Single variable models can be used to determine the overall duration of the project. 
Generally, schedule is modeled as depending on the total effort (which, in turn, 
depends on size). Again, the constants for the model are determined from his tor
ical data. The IBM Federal Systems Division found that the total duration, M, in 
calendar months can be estimated by 

M = 4.1E"36. 

In COCOMO, the schedule is determined in a similar manner. The equation for an 
organic type of software is 

M = 2.5E"38. 

For other project types, the constants vary only slightly. The duration or schedule 
of the different phases is obtained in the same manner as in effort distribution. The 
percentages for the different phases are given in Table 4.4. 
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Size 

Phase Small Intennediate Medium Large 
2KDLOC 8KDLOC 32KDLOC 128KDLOC 

Product Design 19 19 19 19 
Programming 63 59 55 51 
Integration 18 22 26 30 

TABLE 4.4. Phase-wise distribution of schedule. 

In this COCOMO table, the detailed design, coding, and unit testing phases are 
combined into one "programming phase." This is perhaps done because all these 
activities are usually done by programmers, while system design and integration are 
often done by different people, who may or may not be involved in programming 
activities of the project. 

As we can see, these percentages are slightly (but not too much) different from the 
effort distribution percentages. The percentage of total project duration spent in 
detailed design, coding, and unit testing is somewhat higher than the percentage 
of total effort spent in these activities. However, because the percentages are only 
slightly different, it means that the average staff sizes computed for the different 
phases will not be too different from the overall average staff size for the project. 

4.2.2 Projeet Seheduling and Milestones 

Once we have the estimates of the effort and time requirement for the different 
phases, a schedule for the project can be prepared. This schedule will be used later 
to monitor the progress of the projecL 

A conceptually simple and effective scheduling technique is the Gantt chart, which 
uses a calendar-oriented chart to represent the project schedule. Each activity is 
represented as a bar in the calendar, starting from the starting date of the activity 
and ending at the ending date for that activity. The start and end of each activity 
become milestones for the project. 

Progress can be represented easily in a Gantt chart, by ticking off (or coloring) 
each milestone when completed. Altematively, for each activity another bar can 
be drawn specifying when the activity actually started and ended, Le., when these 
two milestones were actually achieved. 

The main drawback of the Gantt chart is that it does not depict the dependency 
relationships among the different activities. Hence, the effect of slippage in one 
activity on other activities or on the overall project schedule cannot be detennined. 
However, it is conceptually simple and easy to understand, and it is heavily used. 
It is sufficient for small and medium-sized projects. 



www.manaraa.com

4.3. Staffing and Personnel Planning 173 

For large projects, the dependencies among activities are important to determine 
which are critical activities, whose completion should not be delayed, and which 
activities are not critical. To represent the dependencies, PERT charts are often used. 
APERT chart is a graph-based chart. It can be used to determine the activities that 
form the "critical path," which if delayed will cause the overall project to delay. 
The PERT chart is not conceptually as simple, and the representation is graphically 
not as clear as Gantt charts. Its use is justified in large projects. 

4.2.3 Example Continued 

We continue with the office automation example. Recall that the overall size esti
mate for the project is 3 KDLOC, and the final effort estimate obtained was 16.34 
PM. As this is an organic system, the overall duration will be determined by the 
equation 2.5 * E°.38. Using this we get the project duration D as 

D = 2.5 * 16.34°·38 = 7.23 months. 

Using the preceding table, wh ich gives the duration of the different phases as a 
percentage of the total project duration, we can obtain the duration of the different 
phases. The duration of the different phases is: 

System Design 
Programming 
Integration 

.19 * 7.23 = 1.37 M 

.623 * 7.23 = 4.5 M 

.1866 * 7.23 = 1.35 M 

If the project is to start on January 1, then according to this, the project will end 
in the middle of August. The system design phase will terminate in the middle of 
February, the programming activity will end in late June, and the rest of the time 
will be spent in integration and testing. Using these estimates, an overall schedule 
for the project can be decided. 

4.3 Staffing and Personnel Planning 

On ce the project schedule is determined and the effort and schedule of different 
phases and tasks are known, staff requirements can be obtained. From the cost 
and overall duration of the project, the average staff size for the project can be 
determined by dividing the total effort (in person-months) by the overall project 
duration (in months). 

This average staff size is not detailed enough for proper personnel planning, es
pecially if the variation between the actual staff requirement at different phases 
is large. Typically the staff requirement for a project is small during requirement 
and design, the maximum during implementation and testing, and drops again 
during the final phases of integration and testing. Using the COCOMO model, 
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average staff requirement for the different phases can be determined as the effort 
and schedule for each phase are known. This presents staffing as a step function 
with time. 

For personnel planning and scheduIing, it is useful to have effort and schedule 
estimates for the subsystems and basic modules in the system. At planning time, 
when the system design has not been done, the planner can only expect to know 
about the major subsystems in the system and perhaps the major modules in these 
subsystems. 

An approximate method, suitable for many small systems, is to divide the total 
schedule in terms of the ratio of the sizes of different components. A more accurate 
method, used in COCOMO, is to start with the sizes of different components (and 
the total systems). The initial effort for the total system is determined. From this, 
the nominal productivity of the project is calculated by dividing the overall size 
by the initial effort. U sing this productivity, the effort required for each of the 
modules is determined by dividing the size by nominal productivity. This gives an 
initial effort estimate for the modules. For each module the rating of the different 
cost driver attributes is determined. From these ratings the effort adjustment factor 
(EAF) for each module is determined. Using the initial estimates and the EAFs, 
the final effort estimate of each module is determined. The final effort estimate 
for the overall system is obtained by adding the final estimates for the different 
modules. 

It should be kept in mind that these effort estimates for a module are done by 
treating a module Iike an independent system, thus inc1uding the effort required 
for design, integration, and testing ofthe module. When used for personnel planning 
this should be kept in mind if the effort for the design and integration phases is 
obtained separately. In that case, the cost of design and integration of a module is 
inc1uded in the design and integration phase effort estimates. 

4.3.1 Rayleigh Curve 

Staffing in a project, in general, is more a continuous function than a step function 
with only a few different values. Putnam has proposed a time-dependent continuous 
function to estimate the staffing at different times throughout the project duration 
[Put78]. The basis of the model is the observation that there are regular patterns of 
manpower buildup and phase-out, independent of the type of work being performed 
(this was earlier observed in hardware development). It was also observed that the 
staffing pattern followed the Rayleigh curve. For software development, there is 
the buildup and phase-out curve for each of the different phases, and each curve is 
a Rayleigh cun;e. The total staffing pattern, which is determined by summing the 
different curves, is also a Rayleigh curve, as shown in Figure 4.2. 
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Ymax 

T 

FIGURE 4.2. The Rayleigh curve. 

If Y is the staffing rate in PY/year (person-year per year), then this staffing pattern 
as a function of time t can be represented by the equation, 

y = 2Kate-at2 PY/yr, 

where K is the total manpower required or the total area under the curve from t = 0 
to infinity. It represents the total person-years used by the project over its entire 
life cyc1e. The constant a is the shape parameter, which is determined by the time 
at which the curve reaches its maximum value. The cumulative manpower used up 
to time t can be obtained by integrating this equation. Representing the cumulative 
manpower by y, we have 

If Y peaks at time td, the constant a is given by the equation 

a = 1/2i;. 

In software projects, it has been observed that td corresponds c10sely to the total 
development time or the time taken to reach full operational capability. Substituting 
for a we get 

y = (K/tJ)te- t2 /2tJ. 

Integrating this equation from t = 0 to td we get the total development effort D: 

In other words, the total development cost is approximately 40% of the totallife
cyc1e costIt was found that the number K / tJ has an interesting property. It rep
resents the difficulty of the system in terms of programming effort required to 
produce it. When this number is small it corresponds with easy systems; when the 
number is large it corresponds to difficult systems. 
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4.3.2 Personnel Plan 

Once the schedule and average staff level for each activity is known, the overall 
personnel allocation for the project can be planned. This plan will specify how 
many people will be needed for the different activities at different times for the 
duration of the project. 

A method of producing the personnel plan is to make it a calendar-based repre
sentation, containing all the months in the duration of the project, by listing the 
months from the starting date to the ending date. Then, for each of the different 
tasks identified and for which cost and schedule estimates are prepared, list the 
number of people needed in each month. The total effort for each month and the 
total effort for each activity can easily be computed from this plan. The total for 
each activity should be the same as (or elose to) the overall person-month estimate. 

Drawing a personnel plan usually requires a few iterations to ensure that the effort 
requirement for the different phases and activities (and the duration of the different 
phases) is consistent with the estimates obtained earlier. The ensuring of consis
tency is made more difficult by the fact that the effort estimates for individual 
modules inelude the design and integration effort for those modules, and this effort 
is also ineluded in the effort for these phases. It is usually not desirable to state staff 
requirements in a unit less than 0.5 person to make the plan consistent with the 
estimates. Some difference between the estimates and the totals in the personnel 
plan is acceptable. 

This type of plan, aIthough it has the overall staff requirement, does not distinguish 
between different types of people. A more detailed plan will list the requirement of 
people by their specialty; for example, stating how many programmers, analysts, 
quality assurance people, and so forth are needed at different times. 

4.3.3 Example Continued 

Now that we have the schedule and effort estimates, we can obtain the cost estimates 
of the different components. We will use COCOMO to estimate the effort for 
different modules. For this project we have the following estimates (repeated here 
for convenience): 

Data Entry 
Data Update 
Query 
Reports 
TOTAL 

0.6KDLOC 
0.6KDLOC 
0.8KDLOC 
1.0KDLOC 
3.0KDLOC 

The initial cost estimate obtained earlier for the total project was 10.14 PM. The 
nominal productivity for the project is 

3.0/10.14 = :29 KDLIPM. 
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We assume that the cost driver attributes for all the different modules are the same 
and the EAF for the modules is 1.61 (for a large system, a module should be 
rated separately, resulting in its ownEAF, which might be different from the EAF 
of others). Using this productivity and EAF, the effort estimate for the different 
modules can be determined as follows: 

Data Entry 
Data Update 
Query 
Reports 

0.6/0.29 x 1.61 = 3.2 PM 
0.6/0.29 x 1.61 = 3.2 PM 
0.8/0.29 x 1.61 = 4.3 PM 
1.0/0.29 x 1.61 = 5.4 PM. 

The total effort estimate for the project is 16.1 PM, which is c10se to the total 
estimate obtained earlier (because the EAF for each module was the same as the 
system EAF in the example shown befare). It should again be pointed out that these 
estimates inc1ude the cost of system design and system testing. Using the effort 
and duration estimates for the different phases obtained earlier, the average staff 
requirement for the different phases can easily be determined, and we get 

System Design 
Programming 
Integration 

2.6/1.37 = 1.9 persons 
11/4.5 = 2.4 persons 
2.7/1.35 = 2 persons. 

Using the estimates far the schedule, the effort for different phases, and the effort 
for different modules, we can draw a personnel plan. As mentioned earlier, to create 
a personnel plan that is consistent with the estimates, a few iterations are needed, 
and the totals in the plan may be somewhat different from the estimates. One plan 
for this example is shown in Table 4.5. 

In this plan we have not inc1uded management as aseparate activity, as it is a small 
project and we assume that one of the persons doing the design will be doing the 
monitoring and control for the duration ofthe project (and spending a fraction ofhis 
or her time on such activity). However, in largerprojects, management requirements 
should be listed separately. Management for a project will require some personnel 
throughout the project, and the requirement is not likely to vary. Notice that in 

Jan Feb Mar Apr May Jun Jul Aug Total 

System Design 2 2 3.0 
DataEntry 2.0 
Update 2.0 
Query 1 1 1 2.5 
Report I 1.5 2 4.0 
Integration 2 2 3.0 

Total 2 2 2 2 2.5 3 2 16.5 

TABLE 4.5. A personnel plan for the example. 
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the plan the effort requirement for different phases-system design, programming 
(for which different modules are listed separately), and integration-is elose to the 
estimates obtained earlier. The duration of the different phases is also elose to the 
duration obtained earlier. 

4.3.4 Team Structure 

Often a team of people is assigned to a project. For the team to work as a cohesive 
group and contribute the most to the project, the people in the team have to be 
organized in some manner. The structure of the team has a direct impact on the 
product quality and project productivity. 

Two basic philosophies have evolved for organizing a team [Man8t]: egoless teams 
and chief programmer teams. Egoless teams consist of ten or fewer programmers. 
The goals of the group are set by consensus, and input from every member is taken 
for major decisions. Group leadership rotates among the group members. Due to 
its nature, egoless teams are sometimes called democratie teams. The structure 
results in many communication paths between people, as shown in Figure 4.3. 

The structure allows input from all members, which can lead to better decisions 
in difficult problems. This suggests that this structure is weIl suited for long-term 
research-type projects that do not have time constraints. On the other hand, it is not 
suitable for regular tasks that are not too complex and that have time constraints. For 
such tasks, the communication in democratic structure is unnecessary and results 
in inefficiency. 

A chief programmer team, in contrast to egoless teams, has a hierarchy. It consists 
of a chief programmer, who has a backup programmer, a pro gram librarian, and 
some programmers. The chief programmer is responsible for all major technical 
decisions of the project. He does most of the design and he assigns coding of the 
different parts of the design to the programmers. The backup programmer helps the 

FIGURE 4.3. Communication paths in a democratic team structure. 
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Chief Programmer 

Back-up Librarian Programmers 
Programmer 

FIGURE 4.4. Chief programmer teams. 

chief programmer make technical decisions, and takes over as the chief programmer 
if the chief programmer falls sick or leaves. The program librarian is responsible 
for maintaining the documentation and other communication-related work. This 
structure considerably reduces interpersonal communication. The communication 
paths are shown in Figure 4.4. This kind of structure is weIl suited for projects 
with simple solutions and strict deadlines. It is not suitable for difficult tasks where 
multiple inputs are useful. 

A third team structure, called the controlled decentralized team [Man81], tries to 
combine the strengths of the democratic and chief programmer teams. It consists 
of a project leader who has a group of senior programmers under hirn, while under 
each senior programmer is a group of junior programmers. The group of a senior 
programmer and his junior programmers behaves like an egoless team, but com
munication among different groups occurs only through the senior programmers 
of the groups. The senior programmers also communicate with the project leader. 
Such a team has fewer communication paths than a democratic team but more 
paths compared to a chief programmer team. This structure works best for large 
projects that are reasonably straightforward. It is not weIl suited for very simple 
projects or research-type projects. 

4.4 Software Configuration Management Plans 

From the earlier discussions on software configuration management, it should be 
somewhat dear what the SCM plans should contain. The SCM plan, like other 
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plans, has to identify all the activities that must be performed, give guidelines for 
performing the activities, and allocate resources for them. 

The SCM plan needs to specify the type of SCIs that will be selected and the stages 
during the project where baselines should be established. Note that in the plan only 
the type of objects that should be selected can be specified; it may not be possible to 
identify the exact item, as the item may not exist at the planning time. For example, 
we can specify that code of any module that is independently unit tested will be 
considered as SCI. However, we cannot identify the particular modules that will 
eventually become the SCIs. 

For configuration control, the plan has to identify the different members of the 
configuration control board, the forms to be used for the change requests and fault 
reporting, and policies, procedures, and tools for controlling the changes. 

Finally, an SCM plan should include a plan for configuration accounting and audit
ing. This part of the plan should state how information on the status of configuration 
items is to be collected, verified, processed, and reported. It should also specify all 
the reports that need to be filed by the people identified as responsible for making 
the changes. It should specify the stages at which major audits must be held, the 
items to be covered during audits, and the procedures to be used for resolving 
problems that occur during audits. 

4.5 Quality Assurance Plans 

To ensure that the final product produced is of high quality, some quality control 
activities must be performed throughout the development. As we saw earlier, if this 
is not done, cOITecting eITors in the final stages can be very expensive, especially if 
they originated in the early phases. The purpose of the software quality assurance 
plans (SQAP) is to specify all the work products that need to be produced during 
the project, activities that need to be performed for checking the quality of each 
of the work products, and the tools and methods that may be used for the SQA 
activities. 

Note that SQAP takes a broad view of quality. It is interested in the quality of 
not only the final product, but also of the intermediate products, even though in a 
project we are ultimately interested in the quality of the delivered product. This 
is due to the fact that in a project it is very unlikely that the intermediate work 
products are of poor quality, but the final product is of high quality. So, to ensure 
that the delivered software is of good quality, it is essential to make sure that the 
requirements and design are also of good quality. For this reason, an SQAP will 
contain QA activities throughout the project. 

The SQAP specifies the tasks that need to be undertaken at different times in the 
life cycle to improve the software quality and how they are to be managed. These 
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tasks will generally include reviews and audits. Each task should be defined with 
an entry and exit criterion, that is, the criterion that should be satisfied to initiate 
the task and the criterion that should be satisfied to terminate the task. Both criteria 
should be stated so that they can be evaluated objectively. The responsibilities for 
different tasks should also be identified. 

The documents that should be produced during software development to enhance 
software quality should also be specified by the SQAP. It should identify all docu
ments that govem the development, verification, validation, use, and maintenance 
of the software and how these documents are to be checked for adequacy. 

4.5.1 Verification and Validation (V & V) 

sQAP has a general and larger view of software quality and includes different 
quality criteria. In verification and validation we are most concemed with the 
correctness of the product. The terms verification and validation are often used 
interchangeably, but they have different meanings. Verification is the process of 
determining whether or not the products of a given phase of software development 
fulfill the specifications established during the previous phase. Verification activ
ities include proving, testing, and reviews. Validation is the process of evaluating 
software at the end of the software development to ensure compliance with the 
software requirements. Testing is a common method of validation. Clearly, for 
high reliability we need to perform both activities. Together they are often called 
V&Vactivities. 

The major V & V activities for software development are inspection, reviews, and 
testing (both static and dynamic). The V&V plan identifies the different V&V 
tasks for the different phases and specifies how these tasks contribute to theproject 
V & V goals. The methods to be used for performing these V & V activities, the 
responsibilities and milestones for each of these activities, inputs and outputs for 
each V & V task, and criteria for evaluating the outputs are also specified. Some of 
the different V & V activities proposed in the IEEE standards on verification and 
validation are shown in Figure 4.5 [IEE87]. 

The two major V &V approaches are testing and inspections. Testing is an activity 
that can be generally performed only on code. It is an important activity and is 
discussed in detail in a later chapter. Inspection is a more general activity that can 
be applied to any work product, including code. Many of the V & V tasks given in 
Figure 4.5 are such that for them an inspection type of activity is the only possible 
way to perf0f!Il the tasks (e.g., traceability and document evaluation). Due to this, 
inspections playa significant role in verification. 
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4.5.2 Inspections and Reviews 

The software inspection process was started by IBM in 1972 [Fag76], to improve 
software quality and increase productivity. Much of the earlier interest was focused 
on inspecting code, as coding seemed to be the major hurdle in a software project. 
However, it was soon discovered that mistakes occur not only during coding but 
also during design, and this realization led to design inspections. Of course, now 
we realize that many times defects in the software are caused by not properly 
understanding the problem, and this has led to requirement inspections. Today, 
inspections are widely used and studies have shown that they are an effective 
method for quality control and tend to enhance productivity. 

IEEE defines inspection as "a formal evaluation technique in which software re
quirements, design, or code are examined in detail by a person or a group other 
than the author to detect faults, violations of development standards, and other 
problems" [IEE87]. The IEEE Standardfor Software Reviews and Audits [IEE94], 
specifies that it is aformal, peer evaluation of a software element whose objective 
is to verify that the software element satisfies its specifications and conforms to 
standards. 

As is c1ear from the definitions, the purpose of an inspection is to perform a careful 
scrutiny of the product by peers. It is different from a walkthrough, which is gen
erally informal and whose purpose is to train or inform someone about a product. 
In a walkthrough, the author describes the work product in an informal meeting 
to his peers or superiors to get feedback or inform or explain to them the work 
product (e.g., a programmer about to leave may use a walkthrough to walk another 
programmer through his programs to transfer the ownership). Though reviews can 
also have a meaning different from inspections (e.g., management review of the 
activities being done), frequently, in the context of software, the term review means 
inspection. We will use these two terms interchangeably. 

In an inspection, in contrast to a walkthrough, the meeting and the procedure are 
much more formal. The inspection of a work product is done by a group of peers, 
who first inspect the product privately and then get together in a formal meeting 
to discuss potential defects found by individuals and to detect more defects. In 
general, an inspection can be held for any technical product, which may inc1ude 
requirements specifications, system design document, detailed design, code, and 
test plan. There are three reasons for having reviews or inspections: 

• Defect removal 

• Productivity increase 

• Provide information for project monitoring 

The primary purpose of inspections is to detect defects at different stages during 
a project. While defects manifest themselves only in the final output, they can be 
injected at any phase during product development. As we have seen, the cost of 
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detecting and removing a defect that originated during requirements or design, 
after the system is implemented, can be 10 to 100 times the cost if the defect was 
removed at the origin. It is for this reason that reviews are held at many different 
stages during the project. The most common work products inspected are the 
requirements document, system design document, detailed design, code, and test 
plan. 

An increase in productivity and a decrease in cost are direct consequences of in
spections. Cost is decreased as the defects are detected early in the development, 
thereby reducing the more expensive corrections that may be needed in the product 
otherwise. Cost is also reduced because in an inspection the defects are directly 
found-not just their presence, as is the case with testing. This avoids the costly 
activity of "debugging." Reviews tend to add to the cost of early phases like re
quirements specification and design but greatly reduce the cost of later phases, 
particularly testing, and maintenance. 

Besides lowering the cost and improving the reliability of systems, inspections have 
other quality control benefits. Inspections also help improve software quality by 
checking properties like standard compliance, modularity, clarity, and simplicity. 
Another beneficial side effect is that coders and designers leam from defects found 
in reviews of their work, which enables them to avoid causing similar defects in 
future projects, thus improving quality and productivity even further. 

For monitoring and control, reliable information about the project is needed, which 
requires some form of evaluation of the various parts of the project. Evaluation of 
the people responsible for the technical output cannot always be relied on. Inspec
tion by a group that includes people not involved in producing the product being 
inspected can be a means for obtaining reliable evaluation. One of the purposes of 
reviews is to provide enough information to management about the project so that 
management decisions can be made effectively. 

It should be stressed that reviews are of products not people. The main purpose is to 
improve the products. Hence, the review data should never be used for personnel 
evaluation. Inspections will produce good results only if the people responsible 
for products are willing to let others find defects in their work without fear of 
jeopardizing their reputation and chances for promotion. 

There is another kind of information that can be gathered using reviews that can 
be useful for setting standards. Which phases have the most defects, the frequency 
of occurrence of different types of defects, the types of defects caught or that slip 
by the review process at different stages can all be used to improve the processes 
and techniques. This kind of information can also be used to evaluate new tools 
and methodologies. 

lnspection Process 

The discussion Qf the inspection process is based on [Hum89, GG94]. An inspection 
is done by a group of people that usually includes the author or the producer of 
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the product under review. Reviewers or inspectors are mainly peers (i.e., they are 
not managers or supervisors) not direct1y responsible for the development of the 
product but concemed with the product (like designers, other programmers of the 
project, and testers). A moderator guides and controls the inspection activity, and 
a recorder records the results of the inspection [Hum89]. The moderator is the 
key person with the responsibility of planning and successful execution of the 
inspection. 

As with any major activity, successful implementation of inspections requires a 
planning phase, an execution phase, and some post-inspection actions [Hum89]. 
During the planning phase, first the product to be inspected is identified, a moderator 
is assigned, the objective of the inspection is stated, and the entry criteria that must 
be satisfied by the product before it can be taken for inspection is specified. The 
objective could be defect detection, or detection of defects of specific types (e.g., 
standards violations, design errors, interface errors). It is important to have a clear 
entry criteria so that the effort spent in inspections is properly used, and minimum 
quality for the product to be inspected is guaranteed. In general, the entry criteria 
will ensure that the defects that can be easily detected through tools are detected 
and removed before thc review so that the review effort focuses on those defects 
that the tools cannot find. However, for code, the review is generally done before 
any testing, as one of the goals of code reviews is to reduce testing and rework 
effort. So, for example, for code inspections, an entry criteria could be that the code 
successfully compiles and has passed some specified source code quality checking 
tools. 

An inspection group is then formed, and an opening meeting is organized by the 
moderator. During this meeting the objective of the review is explained, roles of the 
different people are specified, clarifications about the inspection process are given, 
and the inspection package is distributed to the inspectors. The producer of the 
product can also give an overview of the product being inspected and background 
information relating to the construction of the product. The inspection package 
consists of the document to be inspected, support documents that may be needed 
to understand the contents of the document, forms to be filled in and checklists to 
be used. So, for example, for code reviews, the inspection package can consist of 
the following [Hum89]: 

• Pro gram source listing 

• Pertinent portions of design or specification document 

• Pertinent parts of common definitions (e.g., macros and data structures) that 
are used by the code 

• Any system constraints 

• Blank copies of all forms and reports 

• Checklists to be used for review 

After this, the reviewers individually study the material thoroughly and use the 
checklists to identify all possible defects. They record all potential errors (or un-
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resolved issues) in the error log form, along with the effort they have spent on the 
private review. These logs are then submitted to the moderator, who compiles the 
logs of the different reviewers and gives a copy to the producer so that the producer 
can study the issues raised by the reviewers before the inspection meeting. For pri
vate inspections, properly formed checklists are very important to guide the focus 
of the reviewers. If based on past experience there is some information about the 
nature of errors, then such information can be used to design an effective check
list. With good checklists, most of the defects can be detected during individual 
inspections. 

Dnce an the preparation activities are completed, the stage is set for the inspec
tion meeting. Before scheduling the meeting, the moderator makes sure all the 
preparatory activities have been satisfactorily completed (e.g., an reviewers have 
submitted their error logs). The meeting begins with the producer discussing each 
of the issues raised by the reviewers. The producer either explains why the issue 
listed is not an error or accepts it as a defect (to be fixed later). He may seek clari
fication about other issues raised. There may be a discussion on some of the issues 
or some new issues may be raised. Discussion is an important part of reviews, and 
many additional potential defects are found during the discussions. All the defects 
are noted. Effort should not be made to suggest methods to remove the defect; that 
is to be done by the author after the review (or privately after the review meeting). 
Another important factor to be kept in mind about any review process is the psycho
logical frame of mind of a member of the review committee during the review. It is 
important that the review process be treated as a constructive engagement and not 
as a means of attacking the ability of the author. Such an attitude by the members 
may make the author defensive, which will defeat the purpose of the review. The 
moderator has to make sure that the review meeting stays in control and is focused 
on the objective of the meeting. 

At the conclusion of the meeting, the moderator produces a summary of the inspec
tion, which Iists all defects found that need to be addressed. The authors have to 
address all the issues raised. Many of them will be defects and will require rework 
to address them. The moderator has to ensure that an the issues listed have been 
satisfactorily addressed. The moderator also has to state in the report whether there 
should be another review after the rework is complete. If the defects detected and 
the issues raised are serious, then another meeting should be convened after the 
rework is done. If no further meeting needs to be convened, then it is the responsi
bility of the moderator to ensure that the rework has addressed all issues mentioned 
in the report. This process of review is shown in Figure 4.6. 

Proper execution of reviews is critical to success. Reviews should be done at defined 
points during product development, and time must be allocated in the management 
plans to accommodate review-related activities, particularly the rework. Reviews 
should not last too long, as efficiency falls once the participants get tired. A limit 
of two hours is c9nsidered reasonable. 
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FIGURE 4.6. Review process. 

Inspection Benefits and Costs 

Inspections have been in use for more than two decades now. Considerable data 
now exists to show their effectiveness. There are books that deal exclusively with 
the topic of software inspections [GG94]. An excellent concise description of 
inspections is given in [Hum89]. There is a general agreement that reviews are an 
effective means to improve quality and productivity. The book [GG94] gives a lot 
of data from various reports in support of this. We now discuss some of these data 
as reported in [GG94]. 

In the original article of Fagan [Fag76], an increase of 23% in coding productivity 
and a 25% reduction in schedules were reported. The IBM Federal Systems Divi
sion found that the overall productivity in projects that used inspection was more 



www.manaraa.com

188 4. Planning a Software Project 

than twice than in projects that did not use formal inspections. Some data suggests 
that 50 to 80% ofthe defects can be detected through inspections (i.e., before test
ing begins). The goal of the IBM Federal Systems Division is to detect 85% of 
all defects before testing begins. Clearly, if such a high percentage of defects can 
be detected in the early stages, it will substantially reduce the cost of testing and 
rework. In a project, it was found that if test cases are inspected, as much as 85% 
of the effort needed for unit testing may be saved (e.g., by removing test cases that 
do not add value). In one case, it was found that inspections detected more than 
3500 defects while testing and field experience showed only about 125 defects. 
Productivity increases of 30 to 100% through reviews have been reported. A lot 
more data about direct benefits of reviews is given in [GG94]. 

Inspections have other side benefits. It provides a good means for the project man
agement to monitor the quality and progress of the project. Although frequently, 
maintenance is not inc1uded as apart of development, a major benefit of inspections 
will be in maintenance. Early detection of defects will ensure that the structure of 
the software is not compromised through "quick fixes" that are inevitable if errors 
are detected late. Furthermore, some of the desired qualities, like coupling and 
cohesion, can be checked much more easily through reviews. These together will 
contribute to making the task of the maintainer much easier. Another major benefit 
of inspections is that it improves the capability of people. Through getting their 
products reviewed and through reviewing others' products, people learn from each 
other and learn about the type of errors they and others are making. This, in the 
long ron, leads to people producing products with lower error rates. 

Although inspections are effective, their effectiveness c1early depends on their 
implementation. For example, inspections are most effective if the rate of inspection 
is "reasonable." If the rate is very fast (i.e., too much material covered in one 
review), it tends to reveal too few errors. If the rate is too slow, the cost increases. 
Hence, it is important to have a reasonable rate for review. A review rate of a few 
pages of document per hour is considered reasonable by some. However, it might 
be best to determine the optimum rate for an organization through experimentation. 
The effect of rate on review effectiveness discussed in [Hum89] indicates that the 
optimum rate is between 0.2 and 0.4 KDLOC per hour for FORTRAN programs. 

Now let us look at the cost of inspections. The major cost of inspections is the 
time spent by the review team members conducting the inspection. It has been 
estimated that the cost of the review can be 5 to 10% of the total project cost. 
However, this is the percentage of the cost of the project that has used reviews 
(which is likely to be much less than the cost if there were no inspections). So it 
should not be taken to mean that the project cost has gone up. However, there are 
actual costs involved in initiating reviews in an organization. These inc1ude costs 
of training, mock reviews, and preparing people to accept inspections. And, as with 
many technologies, inspections do not start showing big gains right from start. In 
fact, at the start, inspections may not provide any benefit and might only add to the 



www.manaraa.com

4.6. Project Monitoring Plans 189 

cost. As people get better at conducting inspections, the benefits will increase. The 
big gains mentioned earlier are mostly in organizations that are quite advanced in 
their implementation of inspections and have a lot of experience through which 
they have fine-tuned their inspection process. 

In summary, reviews have been found to be extremely effective for detecting de
fects, improving productivity, and lowering costs. They provide good checkpoints 
for the management to study the progress of a particular project. Reviews are also 
a good tool for ensuring quality control. In short, they have been found to be ex
tremely useful by a diverse set of people and have found their way into standard 
management and quality control practices of many institutions. Their use continues 
to grow. 

4.6 Project Monitoring Plans 

A good plan is useless unless it is properly executed. Consequently, the major 
management activity during the project is to ensure that the plan is properly ex
ecuted, and when needed, to modify plans appropriately. Project assessment will 
be straightforward if everything went according to plan and no changes occurred 
in the requirements. However, on large projects, deviations from the original plan 
and changes to requirements are both to be expected. In these cases the plan should 
be modified. Modifications are also needed as more information about the project 
becomes available or due to personnel tumover. 

The project control phase of the management activity is the longest. For this kind 
of routine management activity, lasting for a long period of time, proper project 
monitoring can playa significant role in aiding project management. However, all 
the methods management intends to use to monitor the project should be planned 
before, during the planning phase, so that management is prepared to handle the 
changes and deviations from the plan and can respond quickly. In this section we 
will discuss some methods for monitoring a project. 

4.6.1 Time Sheets 

Once project development commences, the management has to track the progress of 
the project and the expenditure incurred on the project. Progress can be monitored 
by using the schedule and milestones laid down in the plan. The eamed value 
method, discussed later, can also be used. 

The most common method of keeping track of expenditures is by the use of a 
time sheet. The time sheet records how much time different project members are 
spending on the different identified activities in the project. 
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The time sheet is a common mechanism for collecting raw data. Time sheets can be 
filled daily or weekly. The data obtained from the time sheets can be used to obtain 
information regarding the overall expenditure and its breakup among different 
tasks and different phases at any given time. For example, the effort distribution 
with phases (of the type discussed in Chapter 1) in a particular organization can 
be obtained from the time sheets. By assigning codes to projects, tasks within a 
project, and the nature of the work being done, time sheet processing can easily be 
automated. 

4.6.2 Reviews 

We discussed reviews at some length in an earlier section. We will not go into 
details of reviews here; we'll just comment on a few points regarding the moni
toring aspect of reviews. As mentioned earlier, one of the purposes of reviews is 
to provide information for project control. Reviews provide adefinite and clearly 
defined milestone. It forces the author of a product to complete the product before 
the review. Having this goal gives some impetus and motivation to complete the 
product. 

For monitoring, as we have discussed, reviews can provide a wealth of information. 
First, the review schedules can be used to determine how the project is progressing 
compared to its planned schedule. Then the review reports indicate in which parts of 
the project the programmers/analysts are having difficulty. With this information, 
corrective action, such as replacing a junior person with a senior person, can be 
taken. In addition, review reports provide insight into the quality of the software 
being produced and the types of errors being detected. 

4.6.3 Cost-Schedule-Milestone Graph 

A cost-schedule-milestone [Boe81] graph represents the planned cost of different 
milestones. It also shows the actual cost of achieving the milestones gained so 
far. By having both the planned cost versus milestones and the actual cost versus 
milestones on the same graph, the progress of the project can be grasped easily. 

The x-axis of this graph is time, where the months in the project schedule are 
marked. The y-axis represents the cost, in dollars or PMs. Two curves are drawn. 
One curve is the planned cost and planned schedule, in which each important 
milestone of the project is marked. This curve can be completed after the project 
plan is made. The second curve represents the actual cost and actual schedule, and 
the actual achievement of the milestones is marked. Thus, for each milestone the 
point representing the time when the milestone is actually achieved and the actual 
cost of achieving it are marked. A cost-schedule-milestone graph for the example 
is shown in Figure 4.7. 
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FIGURE 4.7. A cost-schedule-milestone graph. 

The chart shown in Figure 4.7 is for a hypothetical project whose cost is estimated 
to be $100K. Different milestones have been identified and a curve is drawn with 
these milestones. The milestones in this project are PDR (preliminary design re
view), CDR (critical design review), Module 1 completion, Module 2 completion, 
integration testing, and acceptance testing. For each of these milestones some bud
get has been allocated based on the estimates. The planned budget is shown by a 
dotted line. The actual expenditure is shown with a bold line. This chart shows that 
only two milestones have been achieved, PDR and CDR, and though the project 
was within budget when PDR was complete, it is now slightly over budget. 

4.6.4 Earned Value Method 

The system design usually involves a small group of (senior) people. Having a large 
number of people at the system design stage is likely to result in a not-very-cohesive 
design. After the system design is complete, a large number of programmers whose 
job is to do the detailed design, coding, and testing may enter the project. During 
these activities, proper monitoring of people, progress of the different components, 
and progress of the overall project are important. 



www.manaraa.com

192 4. Planning a Software Project 

An effective method of monitoring the progress of a project (partieularly the phases 
after system design) is the earned value method. The earned value method uses a 
Summary Task Planning Sheet (STPS) [Boe81]. The STPS is essentially a Gantt 
chart, with each task (relating to an independently assignable module) having an 
entry in the chart. Each task has the following milestones marked in STPS: detailed 
design, coding, testing, and integration. 

Each milestone of a task is assigned an earned value, whieh is the value (in dollars 
or person-months) that will be "earned" on completion of this milestone. The sum 
of the assigned values for all the milestones for a task is equal to the total cost 
assigned to this task (or the total estimated effort required for this task). 

At any given time, the total effort (or cost) spent on a partieular task can be deter
mined from the time sheets. The total value earned can be determined by adding 
the earned value of all the completed milestones of that task. By comparing the 
earned value with the total cost spent, the project manager can determine how 
far the project is deviating from the initial estimates and then take the necessary 
actions. 

It should be pointed out that, in general, the earned value will be somewhat less 
than the actual effort spent on a task, because this method only attaches value to the 
completed milestones. The work in progress does not get adequately represented 
in the earned value. 

The STPS usually has much more detail than is needed by project management. 
The earned value aspect can be summarized in an earned value summary report. 
This report summarizes the earned value for each task, the actual effort spent on 
that task, and how these compare for a given point in time. The summary report 
can be produced monthly or biweekly. 

4.6.5 Unit Develepment Felder 

The project plan produced after the requirements is a macro-Ievel plan. Even if 
this plan is prepared meticulously and accurately, if proper control is not exercised 
at the miero level (at the level of each programmer and each module), it will be 
impossible to implement the project plan. 

A major problem in tracking micro-Ievel progress is getting accurate information 
about the status of a module. Often, a manager relies on the person implementing the 
module to assess the progress. This estimate by individuals about what percentage 
of work is complete is often not very reliable and can produce the "90% syndrome" 
[Boe81]. 

What happens in the 90% syndrome is that if an individual programmer is asked 
how much work he has completed, the answer after some time is 90%, and it stays 
around this percentage for a long time. Essentially, an individual programmer's 
overconfidence results in under-estimating the effort needed toward the end. 
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The unit development folder (UDF) [lng86] has been used successfully to counter 
the 90% syndrome. It is sometimes also called the programmers' notebook. The 
UDF contains the plan, progress, and all documentation related to the development 
of a program unit. A unit of software is one that performs a specific function, is 
amenable to development by one person, is at a level to which the requirements can 
be traced, and can be tested independently. A unit could be a module, a procedure, 
or a collection of such modules. 

A UDF is typically established after the system design phase, when tasks are 
distributed among programmers. There is a UDF for each unit, and initially it 
contains all specifications of that unit, as obtained from the requirements and 
system design. It is given to the programmer responsible for the development of 
the unit. All documentation produced for this unit goes in the UDF. This includes 
the detailed design for the unit, the unit test plan, and the unit test results. The 
documents from different UDFs are finally merged together to form the system 
documentation about detailed design, test report, and so forth. 

An important element of the UDF is the schedule and progress report of the unit. 
The overall schedule for the unit is determined from the project plan and is given 
to the programmer responsible for the unit. The programmer then breaks up the 
allotted time and produces a detailed schedule for the development of the unit, with 
intermediate milestones for detailed design, coding, test plan, unit testing, and the 
test report. As each of these milestones is achieved, the programmer gets it certified 
from the manager and writes the milestone completion date. 

The basic idea here is to force the prograrnmer to identify intermediate milestones 
in the task. The achievement of these rnilestones is clearly defined and is not 
subjective. This prevents the programmer from giving the subjective opinion that 
the work is "90% done." 

The advantages of the programmer notebook are that it provides a single place for 
collecting all the documentation for a unit, it provides an orderly and consistent 
approach for the development of a unit, and it provides better management and 
visibility of the progress in a unit's development. 

4.7 Risk Management 

Any large project involves certain risks, and that is true of software projects. Risk 
management is an emerging area that aims to address the problem of identifying 
and managing the risks associated with a software project. 

Risk in a project is the possibility that the defined goals are not met. The basic 
motivation of having risk management is to avoid disasters or heavy losses. The 
current interest in risk management is due to the fact that the history of software 
development projects is full of major and minor failures. A large percentage of 
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projects have run considerably overbudget and behind schedule, and many of them 
have been abandoned midway. It is now argued that many of these failures were 
due to the fact that the risks were not identified and managed properly. 

Risk management is an important area; particularly for large projects. Like any 
management activity, proper planning of that activity is central to success. Here 
we discuss various aspects of risk management and planning. 

4.7.1 Risk Management Overview 

Risk is defined as an exposure to the chance of injury or loss [Kon94]. That is, 
risk implies that there is a possibility that something negative may happen. In the 
context of software projects, negative implies that there is an adverse effect on cost, 
quality, or schedule. Risk management is the area that tries to ensure that the impact 
of risks on cost, quality, and schedule is minimal. Like configuration management, 
which minimizes the impact of change, risk management minimizes the impact of 
risks. However, risk management is generally done by the project management. 
For this reason we have not considered risk management as aseparate process 
(though it can validly be considered one) but have considered such activities as 
part of project management. 

Risk management can be considered as dealing with the possibility and actual 
occurrence of those events that are not "regular" or commonly expected. The com
monly expected events, such as people going on leave or some requirements chang
ing, are handled by normal project management. So, in asense, risk management 
begins where normal project management ends. It deals with events that are in
frequent, somewhat out of the control of the project management, and are large 
enough (i.e., can have a major impact on the project) to justify special attention 
[Kon94]. 

Most projects have risk. The idea of risk management is to minimize the possibility 
of risks materializing, if possible, or to minimize the effect of risk actually materi
alizing. For example, when constructing a building, there is a risk that the building 
may later collapse due to an earthquake. That is, the possibility of an earthquake is a 
risk. If the building is a large residential complex, then the potential cost in case the 
earthquake risk materializes can be enormous. This risk can be reduced by shifting 
to a zone that is not earthquake-prone. Altematively, if this is not acceptable, then 
the effects of this risk materializing are minimized by suitably constructing the 
building (the approach taken in Japan and Califomia). At the same time, if a small 
dumping ground is to be constructed, no such approach might be followed, as the 
financial and other impact of an actual earthquake on such a building is so low that 
it does not warrant special measures. 

It should be clear that risk management has to deal with identifying the undesirable 
events that can occur, the probability of their occurring, and the loss if an undesir
able event does occur. Once this is known, strategies can be formulated for either 
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FIGURE 4.8. Risk management activities. 

reducing the probability of the risk materializing or reducing the effect of risk 
materializing. So the risk management revolves around risk assessment and risk 
control. For each ofthese major activities, some subactivities have to be performed. 
A breakdown of these activities is given in Figure 4.8 [Boe89]. 



www.manaraa.com

196 4. Planning a Software Project 

4.7.2 Risk Assessment 

Risk assessment is an activity that must be undertaken during project planning. 
This involves identifying the risks, analyzing them, and prioritizing them on the 
basis of the analysis. The major planning activity in risk management is assessment 
and consequent planning for risk control. Due to the nature of a software project, 
uncertainties are most near the beginning of the project (just as for cost estimation). 
As the project ne ars its end, risks can be assessed more precisely. Due to this, 
although risk assessment should be done throughout the project, it is most needed 
in the starting phases of the project. In addition, identifying the risks early provides 
the management with a lot of time to effectively handle the risks. 

At a very high level, the software risks can be broadly divided into three categories. 
These are: 

• Cost risk 

• Performance risk 

• Schedule risk 

Cost risk is the degree of uncertainty associated with budgets and outlays for the 
project and its impact on the project. Performance risk is the possibility that the 
system will be unable to deliver all or some of the anticipated benefits or will 
not perform according to the requirements. Here performance inc1udes quality. 
Schedule risk is the degree of uncertainty associated with the project schedule or 
the ability of the project to achieve the specified milestones. 

The goal of risk assessment is to prioritize the risks so that risk management can 
focus attention and resources on the more risky items. Risk identification is the 
first step in risk assessment, which identifies all the different risks for a partic
ular project. These risks are project-dependent, and their identification is c1early 
necessary before any risk management can be done for the project. 

Based on surveys of experienced project managers, Boehm [Boe89] has produced 
a list of the top-l 0 risk items likely to compromise the success of a software project. 
Though risks in a project are specific to the project, this list forms a good starting 
point for identifying such risks. Figure 4.9 shows these top-lO items along with 
the techniques preferred by management for managing these risks. 

The top-ranked risk item is personnel shortfalls. This involves just having fewer 
people than necessary or not having people with specific skills that a project might 
require. Some of the ways to manage this risk is to get the top talent possible and to 
match the needs of the project with the skills of the available personnel. Adequate 
training, along with having some key personnel for critical areas of the project, 
will also reduce this risk. 

The second item, unrealistic schedules and budgets, happens very frequently due 
to business and other reasons. It is very common that high-level management 
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FIGURE 4.9. Tap-lO risk items and techniques far managing them. 

imposes a schedule for a software project that is not based on the characteristics 
of the project and is unrealistic. This risk applies to all projects. Project-specific 
risks in cost and schedule occur due to underestimating the value of some of the 
cost drivers. Recall that cost models like COCOMO estimate the cost and schedule 
based on some estimates about size and cost drivers. Even if the size estimate is 
correct, by incorrectly estimating the value of the cost drivers, the project runs the 
risk of going overbudget and falling behind schedule. The cost and schedule risks 
can be approximated by estimating the maximum value of different cost drivers, 



www.manaraa.com

198 4. Planning a Software Project 

along with the probability of occurrence and then estimating the possible cost and 
schedule overruns. 

The next few items are related to requirements. Projects run the risk of developing 
the wrong software if the requirements analysis is not done properly and if develop
ment begins too early. Similarly, often improper user interface may be developed. 
This requires extensive rework of the user interface later or the software benefits 
are not obtained because users are reluctant to use it. Gold plating refers to adding 
features in the software that are only marginally useful. This adds unnecessary 
risk to the project because gold plating consumes resources and time with little 
return. Some requirement changes are to be expected in any project, but some
times frequent changes are requested, which is often a reftection of the fact that 
the dient has not yet understood or settled on its own requirements. The effect of 
requirement changes is substantial in terms of cost, especially if the changes occur 
when the project has progressed to later phases. Performance shortfalls are critical 
in real-time systems and poor performance can mean the failure of the project. 

If a project depends on externally available components-either to be provided by 
the dient or to be procured as an off-the-shelf component-the project runs some 
risks. The project might be delayed if the external component is not available on 
time. The project would also suffer if the quality of the external component is poor 
or if the component turns out to be incompatible with the other project components 
or with the environment in which the software is developed or is to operate. If a 
project relies on technology that is not weIl developed, it may fail. This is a risk 
due to straining the computer science capabilities. 

Using the checklist of the top-lO risk items is one way to identify risks. This 
approach is likely to suffice in many projects. The other methods listed in Figure 4.8 
are decision driver analysis, assumption analysis, and decomposition. Decision 
driver analysis involves questioning and analyzing all the major decisions taken 
for the project. If adecision has been driven by factors other than technical and 
management reasons, it is likely to be a source of risk in the project. Such decisions 
may be driven by politics, marketing, or the desire for short-term gain. Optimistic 
assumptions made about the project also are a source of risk. Some such optimistic 
assumptions are that nothing will go wrong in the project, no personnel will quit 
during the project, people will put in extra hours if required, and all external 
components (hardware or software) will be delivered on time. Identifying such 
assumptions will point out the source of risks. An effective method for identifying 
these hidden assumptions is comparing them with past experience. Decomposition 
implies breaking a large project into dearly defined parts and then analyzing them. 
Many software systems have the phenomenon that 20% of the modules cause 80% 
of the project problems. Decomposition will help identify these modules. 

Risk identification merely identifies the undesirable events that might take place 
dming the project, Le., enumerates the "unforeseen" events that might occur. It 
does not specify the probabilities of these risks materializing nor the impact on the 
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project if the risks indeed materialize. Hence the next tasks are risk analysis and 
prioritization. 

Not all the items listed earlier can be analyzed with the use of some models; sub
jective analysis often needs to be done. However, if cost models are used for cost 
and schedule estimation, then the same models can be used to assess the cost and 
schedule risk. For example, in the COCOMO cost model, the cost estimate depends 
on the ratings of the different cost drivers. One possible source of cost risk is under
estimating these cost drivers. The other is underestimating the size. Risk analysis 
can be done by estimating the worst-case value of size and all the cost drivers and 
then estimating the project cost from these values. This will give us the worst-case 
analysis. Using the worst-case effort estimate, the worst-case schedule can easily 
be obtained. A more detailed analysis can be done by considering different cases 
or a distribution of these drivers. 

The other approaches for risk analysis include studying the probability and the 
outcome of possible decisions (decision analysis), understanding the task depen
dencies to decide critical activities and the probability and cost of their not being 
completed on time (network analysis), risks on the various quality factors like reli
ability and usability (quality factor analysis), and evaluating the performance early 
through simulation, etc., if there are strong performance constraints on the system 
(performance analysis). The reader is referred to [Boe89] for further discussion of 
these topics. 

Once the probabilities of risks materializing and los ses due to materliazation of 
different risks have been analyzed, they can be prioritized. One approach for prior
itization is through the concept of risk exposure (RE) [Boe89], which is sometimes 
called risk impact. RE is defined by the relationship 

RE = Prob(U 0) * Loss(U 0), 

where Prob(U 0) is the probability of the risk materializing (Le., undesirable out
come) and Loss(U 0) is the totalloss incurred due to the unsatisfactory outcome. 
The loss is not only the direct financial loss that might be incurred but also any 
loss in terms of credibility, future business, and loss of property or life. The RE is 
the expected value of the loss due to a particular risk. For risk prioritization using 
RE, the higher the RE, the higher the priority of the risk item. 

It is not always possible to use models and prototypes to assess the probabilities 
of occurrence and of loss associated with particular events. Due to the nonavail
ability of models, assessing risk probabilities is frequently subjective. A subjective 
assessment can be done by the estimate of one person or by using a group consen
sus technique like the Delphi approach [Boe81]. In the Delphi method, a group of 
people discusses the problem of estimation and finally converges on a consensus 
estimate. 
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4.7.3 Risk Control 

Whereas risk assessment is a passive activity identifying the risks and their impacts, 
risk control comprises active measures that are taken by project management to 
minimize the impact of risks. Though risk assessment is primarily done during 
project planning as risk assessment in early stages is most important, like cost and 
schedule estimation, the assessment should be evaluated and changed, if needed, 
throughout the project. 

Like any active task (e.g., configuration management, development), risk control 
starts with risk management planning. Plans are developed for each identified risk 
that needs to be controlled. Many risks might be combined together for the purposes 
of planning, if they require similar treatment. This activity, like other other planning 
activities, is done during the project initiation phase. The risk management plan for 
a particular risk item need not be elaborate or extensive. A basic risk management 
plan has five components [Boe89]. These are: (1) why the risk is important and why 
it should be managed, (2) what should be delivered regarding risk management 
and when, (3) who is responsible for performing the different risk management 
activities, (4) how will the risk be abated or the approach be taken, and (5) how 
many resources are needed. 

The main focus of risk management planning is to enumerate the risks to be con
trolled (based on risk assessment) and specify how to deal with a risk. One obvious 
strategy is risk avoidance, which entails taking actions that will avoid the risk al
together, like the earlier example of shifting the building site to a zone that is not 
earthquake-prone. For some risks, avoidance might be possible. Another obvious 
strategy is risk reduction; if the risk cannot be avoided, perhaps the probability of 
the risk materializing can be reduced or the loss due to the risk materializing can 
be reduced. Other strategies were mentioned in Figure 4.8. 

The actual elimination or reduction is done in the risk resolution step. Risk res
olution is essentially implementation of the risk management plan. For example, 
if the risk avoidance is to be used, the activities that will avoid the risk have to 
be implemented. Similarly, in plan it might have been decided that the risk can 
be reduced by prototyping. Then prototyping is done in the risk resolution step 
and necessary information obtained to reduce the risk. Incidentally, prototyping 
is a very important technique for reducing risks associated with requirements or 
reducing risks of the type "perhaps this cannot be done?" 

Risk monitoring is the activity of monitoring the status of various risks and their 
control activities. Like project monitoring, it is performed through the entire du
ration of the project. Like many monitoring activities, a checklist is useful for 
monitoring. While monitoring risks, like with monitoring costs and schedules, re
assessments might need to be performed, if the real situation differs substantially 
from the situation predicted earlier based on assessment and planning. 
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4.8 Summary 

A proper project plan is an important ingredient for a successful project. Without 
proper planning, a large software development project is doomed. Good planning 
can be done after the requirements for the project are available. Tbe output of the 
planning phase is the project plan, which forms an additional input to all later 
phases. Tbe important planning activities are: 

• Cost estimation 

• Schedule and milestones 

• Staffing and personnel plan 

• Quality assurance plans 

• Configuration management plans 

• Project monitoring plans 

• Risk management. 

Cost estimation is the activity where the overall cost requirement for the project 
and the breakup of the cost for different phases is estimated. As human resources 
are the most important for software development, cost estimates are often given in 
terms of person-months (PM). 

For estimating the cost, cost models that estimate the cost as a function of various 
parameters are used. One well-known model is the COCOMO model. In this model, 
the initial cost estimate is obtained as a function of the size of the final product. 
Then the cost estimate is refined based on various properties of the project. The 
cost for different phases is specified as a fixed percentage of the overall cost and 
can easily be obtained from the overall cost estimate. 

The duration required for the project and for the various activities is an important 
planning activity. There are models to estimate the duration of a project. In CO
COMO, the overall schedule is obtained in a similar manner as the overall cost. 
The breakup of this duration into duration for different activities is also done in a 
manner similar to the method for determining the cost for different phases. 

With the overall cost estimate and the overall project duration estimate, the average 
staff requirement for the project can easily be estimated. For planning, a more 
detailed staff estimate is usually necessary. This can be obtained from the effort 
and duration estimate for different tasks and phases. 

Once the duration and staff requirement are estimated, a personnel plan can be 
prepared. This plan defines how many people are needed at different times during 
the life of the project. It also specifies the team structure. 

Quality assurance plans are important for ensuring that the final product is of high 
quality. The software quality assurance plan specifies the outputs or reports that 
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Exercises 

will be produced during the development and the criterion for accepting them. It 
identifies all the V & V activities that have to be performed at different stages in the 
development. The SQAP also schedules these activities. 

The configuration management plan is important for large projects that last for a 
long time. In such projects the code, design, and even the requirements change. 
Because a change affects many other parts of the system, changes are introduced in a 
methodical manner by using configuration control. Configuration control planning 
requires the identification of the configuration items, people who are responsible 
for configuration control, and the criterion used for evaluating change requests. 

For a plan to be successfully implemented it is essential that the project be moni
tored carefully. This requires that project monitoring plans be prepared. There are 
a number of ways to monitor the progress, cost, schedule, or quality of the project. 
These inc1ude time sheets, reviews, a cost-schedule-milestone chart, the earned 
value method, and the unit development folder. The purpose of all these is to pro
vide accurate and objective information management. Some of these techniques 
also help the programmer better assess his own progress. 

The last topic we covered in the chapter is risk management. This is a relatively 
new area that is gaining importance due to the increasing application of computer 
systems in increasingly complex environments. Risk is the possibiIity of loss due 
to inability of the project to meet the goals. Risk management requires that risks be 
identified, analyzed, and prioritized. Based on the priorities, plans can be devised 
to minimize the risks. 

1. Suppose that the requirements specification phase is divided into two parts: 
the initial requirements and feasibility study and the detailed requirements 
specification. Suppose that first part costs about 25% ofthe total requirement 
cost. Based on the cost distribution data given earlier, develop a cost estimation 
model that can be used to predict the cost after (a) the feasibility study and (b) 
the detailed requirements. What are the basic parameters for this cost model? 
How accurate is this cost model? Is the accuracy better for case (a) or case 
(b)? 

2. A database system is to be developed. After the requirements, its size is 
estimated to be 10,000 lines of code. Estimate the overall cost using the 
Watson and Felix model. 

3. Consider a project to develop a full-screen editor. The major components 
identified are (1) screen edit, (2) command language interpreter, (3) file input 
and output, (4) cursor movement, and (5) screen movement. The sizes for 
these are estimated to be 4K, 2K, 1K, 2K, and 3K delivered source code 
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lines. Use the COCOMO model to determine (a) overall cost and schedule 
estimates (assurne values for different cost drivers, with at least three of them 
being different from 1.0), (b) cost and schedule estimates for different phases, 
and (c) detailed cost and schedule estimates for the different components. 

4. For the preceding example, determine the staff requirement for the different 
phases. What are the average, maximum, and minimum staff requirements? 

5. What are the limitations of the cost estimation models? 

6. Suppose each communication path between two people consumes 5% of each 
person's time. For a project that requires 12 staff-months of programming 
work, how many people will be needed to finish the project in four months if 
(a) the democratic team structure is used, and (b) the chief-programmer team 
structure is used? If the team consists of four persons, what is the difference 
in the completion time for a team using the democratic structure and a team 
using the chief-programmer structure? 

7. What are the major benefits of reviews? 

8. Assurne that testing (and bug fixing) effort is proportional to the number of 
errors detected (regardless of the nature of error). Suppose that testing detects 
90% ofthe total errors in the SW (10% remain undetected). By adding design 
and code reviews, suppose the cost of the design and coding phases increases 
by 10% each (from the base distribution given earlier), and 10% of the errors 
are detected in design reviews and 10% in code reviews. (So, testing now 
detects only 70% of errors.) What is the impact on the overall cost of reviews? 

9. You want to monitor the effort spent on different phases in the project and the 
time spent on different components. Design a time sheet or form to be filled 
by the programmers that can be used to get this data. The design should be 
such that automated processing is possible. 

10. Think oftwo other risks not given in Figure 4.9. Suggest some possible ways 
to assess and control these. 
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CASE STUDY PLAN 

Here we present a plan for the course scheduling project. Tbe plan covers the 
entire life cycle of the project. For illustration purposes, derivation of the cost 
and schedule estimates is shown, although in an actual plan these derivations are 
not needed. Similarly, at many places commentary and explanations have been 
included for the purpose of explanation and are not usually part of the plan. 

Cost and Schedule Estimates 

The size estimates for these in lines of code are: 

Input 650 
Schedule 650 
Output 150 
TOTAL 1450 = 1.45 KDLOC 

Because this project is somewhat smalI, COCOMO estimates might be inaccurate. 
Hence, we use the simple method of determining the effort based on average 
productivity. Based on experience and capability of programmers (though no data 
has been formally collected for this), it is feit that for a project of this size the 
productivity will be of the order of 600 LOC per PM. From this, we get the effort 
estimate: 

E = 1.45/.6 = 2.4 PM. 

To get the phase-wise breakup of cost we use the distribution of costs given earlier 
for COCOMO. The phase-wise cost breakup for the project is 

Design 
Detailed Design 
Coding and Testing 
Integration 

2.4 * 0.16 = 0.38 PM 
.26 * 2.4 = 0.62 PM 
.42 * 2.4 = 1.0 PM 
0.16 * 2.4 = 0.38 PM 

To estimate the overall schedule, M, we again use the COCOMO equations and 
get M = 2.5 * (2.4)°·38 = 3.48 months. The distribution of the schedule in different 
activities is (using COCOMO percentages): 

Design 0.7 months 
Programming 2.2 months 
Testing 0.6 months 

Tbe project will start in the middle of January and end after 3.5 months at the end 
of April. The proposed schedule for the project is shown in Table 4.6 in the form 
of a bar chart. 
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System Design 

Detail Design 

Coding 

Unit Testing 

Test Plan 

Testing 

I I I I I I I L I I I I 
I I I I I I I I I I I I 

January February March April 

TABLE 4.6. Project schedule. 

Personnel Plan and Detailed Schedule 

The total coding and unit testing effort is one PM. During this the different modules 
will be coded and tested. We approximate the effort for the different modules in 
this phase by dividing one PM in the ratio of the sizes of the modules. From this 
we get the estimate for coding and unit testing of different modules: 

Input .4 
Schedule .4 
Output .2 

The team consists of two permanent and one floating member. All these team 
members are students who will devote about one-third of their time to the project. 
Consequently, the total PM estimate obtained from the personnel plan should be 
divided by three to obtain the actual person-months cost. The personnel plan is 
shown in Table 4.7. 

From this personnel plan we get the total 7.25. The total effort in person-months 
here is 7.25/3 = 2.4 PM, which is the estimate obtained earlier. The effort sanctioned 
for each module is also close to the estimates obtained above. For example, for the 
input or schedule module, 1.0/3 = 0.33 PM has been allotted, while the estimate is 
0.4. The sanctioned effort for system design in this plan is 0.5 PM, while the earlier 
estimate is 0.7. These minor discrepancies exist because of the approximations 
made. 
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January February March April Total 
.L .L .L .L i --'-

I I I I I I I I I I I I 

System 2 2 2 1.5 
Design 

Detail 2 2 2 2 2.0 
Design 

Coding 
1 1 1 1 1.0 

Input 
1 1 1 1 1.0 

Sched. 0.25 
Output 1 

Testing 2 2 2 1.5 

Total 1.0 2.0 2.25 2.0 7.25 

TABLE 4.7. Personnel plan for the project. 

A hierarchical team structure similar to the chief programmer team will be used. The 
group will have aleader, who will allocate tasks to team members. During system 
and detai!ed design, only the two permanent members will be involved. During 
coding and unit testing, the third person might be used, if the leader desires. There 
will be no librarian in the project, as H is a small project, and the programmers 
themselves will do the documentation and other library tasks. Ifnecessary, the third 
member of the team will perform the duties of the librarian. 

Configuration Control Plan 

In this project, we will only have configuration control for the code. The design 
will not be under configuration management. The requirements are assumed to be 
frozen; any change will be negotiated with the management. 

The configuration control board (CCB) will consist only of the group leader. A 
module will be taken for configuration management, only after it has been suc
cessfully unit tested and its unH test results have been approved by the group leader. 
Change requests will be made to the CCB through electronic mai!, and the requester 
will have to justify the request. Requested changes will generally be allowed if the 
change does not change the interface of the module, and the project is not behind 
schedule. Changes that will modify the module interface or affect other program
mers will, in general, not be approved unless there are good reasons for doing 
so. In this case, all the concemed parties will be informed of the change through 
electronic mail. 
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Quality Assurance Plans 

To ensure quality, the following documents (besides this plan and the requirements 
document) will be produced during the development: 

• System design document 

• Code 

• Unit test report 

• System test plan 

• System test reports 

The following methods will be used for quality control: 

• Preliminary design review 

• Unit testing 

• System test plan review 

• System testing 

It is feIt that because the system is smalI, a detailed incremental testing is not 
needed. A two-Ievel testing is used: unit testing followed by system testing. The' 
system test plan, however, will be reviewed before the testing is performed. No 
code review will be done. 

Monitoring Plans 

Three basic methods will be used for project monitoring-project logs, biweekly 
meetings and reviews. Because we do not have a time sheet processing system, each 
project member will keep a multipurpose log in which he will record the different 
activities he performs and the date and duration of the activity. The failure and 
error data obtained during testing will also be recorded in the log. Cross checking 
of the log data can be done by those events in which more than one person of the 
team participated. The format of the log entries is: 

Date Time Time 
From To 

Time 
InMts 

Activity 
Type 

Comments 

Activity type is one ofthe following: requirement understanding, design (system or 
detailed), coding, testing, report writing, meetings, debugging (including correcting 
errors), and others. In the comment field, the errors encountered during testing have 
to be recorded. 

Reviews to be held are defined earlier. In addition to reviews, a biweekly meeting 
will be held to discuss the progress of the project. 
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Risk Management 

The project has no major hazards associated with it. The only risks it has are the cost 
and schedule risks. Although analysis can easily be done regarding the schedule 
risks involved, it is feIt that because the team has one part-time member (who is 
largely under-used), schedule slippage can be easily handled. Similarly, because 
the costs are low in this small project, it is feIt that an analysis of the cost risk is 
unnecessary. 
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Function-Oriented Design 

The design activity begins when the requirements document for the software to be 
developed is available. This may be the SRS for the complete system, as is the case 
if the waterfall model is being followed or the requirements for the next "iteration" 
if the iterative enhancement is being followed or the requirements for the prototype 
if the prototyping is being followed. While the requirements specification activity 
is entirely in the problem domain, design is the first step in moving from the prob
lem domain toward the solution domain. Design is essentially the bridge between 
requirements specification and the final solution for satisfying the requirements. 

The term design is used in two ways. Used as averb, it represents the process 
of design. Used as a noun, it represents the result of the design process, which is 
the design for the system. The goal of the design process is to produce a model 
or representation of a system, which can be used later to build that system. The 
produced model is called the design 0/ the system. 

The design of a system is essentially a blueprint or a plan for a solution for the 
system. Here we consider a system to be a set of components with c1early defined 
behavior that interacts with each other in a fixed defined manner to produce some 
behavior or services for its environment. A component of a system can be consid
ered a system, with its own components. In a software system, a component is a 
software module. 

The design process for software systems often has two levels. At the first level the 
focus is on deciding which modules are needed for the system, the specifications 
of these modules, and how the modules should be interconnected. This is what is 
called the system design or top-level design. In the second level, the internal design 
of the modules, or how the specifications of the module can be satisfied, is decided. 
This design level is often called detailed design or logic design. Detailed design 
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essentially expands the system design to contain a more detailed description of the 
processing logic and data structures so that the design is sufficiently complete for 
coding. 

Because the detailed design is an extension of system design, the system design 
controls the major structural characteristics of the system. The system design has 
a major impact on the testability and modifiability of a system, and it impacts its 
efficiency. Much of the design effort for designing software is spent creating the 
system design. 

A design methodology is a systematic approach to creating a design by applying of a 
set of techniques and guidelines. Most design methodologies focus on the system 
design. Most current design methodologies essentially offer a set of guidelines 
that can be used by the developer to design a system. These techniques are not 
formalized and do not reduce the design activity to a sequence of steps that can be 
followed by the designer. 

The input to the design phase is the specifications for the system to be designed. 
Hence a reasonable entry criteria can be that the specifications are stable and have 
been approved, hoping that the approval mechanism will ensure that the speci
fications are complete, consistent, unambiguous, etc. The output of the top-level 
design phase is the architectural design or the system design for the software sys
tem to be built. This can be produced with or without using a design methodology. 
A reasonable exit criteria for the phase could be that the design has been verified 
against the input specifications and has been evaluated and approved for quality. 

A design can be object-oriented or function-oriented. In function-oriented design, 
the design consists of module definitions, with each module supporting a func
tional abstraction. In object-oriented design, the modules in the design represent 
data abstraction (these abstractions are discussed in more detaillater). In this chap
ter we discuss the function-oriented methods for design and describe one particular 
methodology-the structured design methodology-in some detail. In a function
oriented design approach, a system is viewed as a transformation function, trans
forming the inputs to the desired outputs. The purpose of the design phase is to 
specify the components for this transformation function, so that each component is 
also a transformation function. Hence, the basic output of the system design phase, 
when a function oriented design approach is being followed, is the definition of all 
the major data structures in the system, all the major modules of the system, and 
how the modules interact with each other. 

In this chapter, before we discuss aspects of function-oriented design, we will dis
cuss some general design principles that are applicable for most design approaches. 
Then we discuss some concepts specific to function-oriented designs, followed by 
a notation for expressing function-oriented designs i:lnd the description of the struc
tured design methodology. Then we discuss some verification methods for design 
and some metrics that are applicable to function-oriented designs. As in most chap-
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ters, we will end with the case study-the complete design for the case study is 
given along with some discussion about the application of the design metrics to 
the case study. 

5.1 Design Principles 

The design of a system is correct if a system built precisely according to the design 
satisfies the requirements of that system. Clearly, the goal during the design phase 
is to produce correct designs. However, correctness is not the sole criterion during 
the design phase, as there can be many correct designs. The goal of the design 
process is not simply to produce a design for the system. Instead, the goal is to 
find the best possible design within the limitations imposed by the requirements 
and the physical and social environment in which the system will operate. 

To evaluate a design, we have to specify so me properties and criteria that can be 
used for evaluation. Ideally, these properties should be as quantitative as possible. 
In that situation we can mathematically evaluate the "goodness" of a design and 
use mathematical techniques to formally determine the best design. However, as 
with many objects in the real world, criteria for quality of software design is often 
subjective or non-quantifiable. In such a situation, criteria are essentially thumb 
mIes that aid design evaluation. 

A design should clearly be verifiable, complete (implements all the specifications), 
and traceable (all design elements can be traced to some requirements). However, 
the two most important properties that concem designers are efficiency and simplic
ity. Efficiency of any system is concemed with the proper use of scarce resources 
by the system. The need for efficiency arises due to cost considerations. If some 
resources are scarce and expensive, it is desirable that those resources be used 
efficiently. In computer systems, the resources that are most often considered for 
efficiency are processor time and memory. An efficient system is one that con
sumes less processor time and requires less memory. In earlier days, the efficient 
use of CPU and memory was important due to the high cost of hardware. Now that 
the hardware costs are small compared to the software costs, for many software 
systems tradition al efficiency concems now take a back se at compared to other 
considerations. One of the exceptions is real-time systems, where there are strict 
execution time constraints. 

Simplicity is perhaps the most important quality criteria for software systems. We 
have seen that maintenance of software is usually quite expensive. Maintainability 
of software is one of the goals we have established. The design of a system is 
one of the most important factors affecting the maintainability of a system. During 
maintenance, the first step a maintainer has to undertake is to understand the system 
to be maintained. Only after a maintainer has a thorough understanding of the 
different modules of the system, how they are interconnected, and how modifying 
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one will affect the others should the modification be undertaken. A simple and 
understandable design will go a long way in making the job of the maintainer 
easier. 

These criteria are not independent,and increasing one may have an unfavorable 
effect on another. For example, often the "tricks" used to increase efficiency of 
a system result in making the system more complex. Therefore, design decisions 
frequently involve trade-offs. It is the designers' job to recognize the trade-offs 
and achieve the best balance. For our purposes, simplicity is the primary property 
of interest, and therefore the objective of the design process is to produce designs 
that are simple to understand. 

Creating a simple (and efficient) design of a large system can be an extremely 
complex task that requires good engineering judgment. As designing is fundamen
tally a creative activity, it cannot be reduced to aseries of steps that can be simply 
followed, though guidelines can be provided. In this section we will examine some 
basic guiding principles that can be used to produce the design of a system. Some 
of these design principles are concemed with providing means to effectively handle 
the complexity of the design process. Effectively handling the complexity will not 
only reduce the effort needed for design (i.e., reduce the design cost), but can also 
reduce the scope of introducing eITors during design. The principles discussed here 
form the basis for most of the design methodologies. 

It should be noted that the principles that can be used in design are the same as 
those used in problem analysis. In fact, the methods are also similar because in 
both analysis and design we are essentially constructing models. However, there 
are some fundamental differences. First, in problem analysis, we are constructing 
a model of the problem domain, while in design we are constructing a model for 
the solution domain. Second, in problem analysis, the analyst has limited degrees 
of freedom in selecting the models as the problem is given, and modeling has to 
represent it. In design, the designer has a great deal of freedom in deciding the 
models, as the system the designer is modeling does not exist; in fact the designer 
is creating a model for the system that will be the basis ofbuilding the system. That 
is, in design, the system depends on the model, while in problem analysis the model 
depends on the system. Final1y, as pointed out earlier, the basic aim of modeling 
in problem analysis is to understand, while the basic aim of modeling in design is 
to optimize (in our case, simplicity and performance). In other words, though the 
basic principles and techniques might look similar, the activities of analysis and 
design are very different. 

5.1.1 Problem Partitioning and Hierarchy 

When solving a smal1 pnblem, the entire problem can be tackled at once. The 
complexity oflarge problems and the limitations ofhuman minds do not al10w large 
problems to be treated as huge monoliths. For solving larger problems, the basic 
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principle is the time-tested principle of "divide and conquer." Clearly, dividing in 
such a manner that all the divisions have to be conquered together is not the intent of 
this wisdom. This principle, if elaborated, would mean "divide into smaller pieces, 
so that each piece can be conquered separately." 

For software design, therefore, the goal is to divide the problem into manageably 
small pieces that can be solved separately. It is this restriction of being able to solve 
each part separately that makes dividing into pieces a complex task and that many 
methodologies far system design aim to address. Tbe basic rationale behind this 
strategy is the belief that if the pieces of a problem are solvable separately, the cost 
of solving the entire problem is more than the sum of the cost of solving all the 
pieces. 

However, the different pieces cannot be entirely independent of each other, as they 
together form the system. Tbe different pieces have to cooperate and communicate 
to solve the larger problem. Tbis communication adds complexity, which arises due 
to partitioning and may not have existed in the original problem. As the number of 
components increases, the cost of partitioning, together with the cost of this added 
complexity, may become more than the savings achieved by partitioning. It is at 
this point that no further partitioning needs to be done. The designer has to make 
the judgment about when to stop partitioning. 

As discussed earlier, two of the most important quality criteria for software de
sign are simplicity and understandability. It can be argued that maintenance is 
minimized if each part in the system can be easily related to the application and 
each piece can be modified separately. If a piece can be modified separately, we 
call it independent of other pieces. If module A is independent of module B, then 
we can modify A without introducing any unanticipated side effects in B. Total 
independence of modules of one system is not possible, but the design process 
should support as much independence as possible between modules. Dependence 
between modules in a software system is one of the reasons for high mainte
nance costs. Clearly, proper partitioning will make the system easier to maintain 
by making the design easier to understand. Problem partitioning also aids design 
verification. 

Problem partitioning, which is essential for solving a complex problem, leads to 
hierarchies in the design. That is, the design produced by using problem partitioning 
can be represented as a hierarchy of components. The relationship between the 
elements in this hierarchy can vary depending on the method used. For example, 
the most common is the "whole-part of" relationship. In this, the system consists 
of some parts, each part consists of subparts, and so on. This relationship can 
be naturallyrepresented as a hierarchical structure between various system parts. 
In general, hierarchical structure makes it much easier to comprehend a complex 
system. Due to this, all design methodologies aim to produce a design that has nice 
hierarchical structures. 
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5.1.2 Abstraction 

Abstraction is a very powerful concept that is used in all engineering disciplines. 
It is a tool that pennits a designer to consider a component at an abstract level 
without worrying about the details of the implementation of the component. Any 
component or system provides some services to its environment. An abstraction 
of a component describes the external behavior of that component without both
ering with the internal details that produce the behavior. Presumably, the abstract 
definition of a component is much simpler than the component itself. 

Abstraction is an indispensable part of the design process and is essential for 
problem partitioning. Partitioning essentially is the exercise in determining the 
components of a system. However, these components are not isolated from each 
other; they interact with each other, and the designer has to specify how a compo
nent interacts with other components. To decide how a component interacts with 
other components, the designer has to know, at the very least, the extern al be
havior of other components. If the designer has to understand the details of the 
other components to determine their extern al behavior, we have defeated the pur
pose of partitioning-isolating a component from others. To allow the designer to 
concentrate on one component at a time, abstraction of other components is used. 

Abstraction is used for existing components as weIl as components that are be
ing designed. Abstraction of existing components plays an important role in the 
maintenance phase. To modify a system, the first step is understanding what the 
system does and how. The process of comprehending an existing system involves 
identifying the abstractions of subsystems and components from the details of their 
implementations. Using these abstractions, the behavior of the entire system can 
be understood. This also helps determine how modifying a component affects the 
system. 

During the design process, abstractions are used in the reverse manner than in the 
process of understanding a system. During design, the components do not exist, and 
in the design the designer specifies only the abstract specifications of the different 
components. The basic goal of system design is to specify the modules in a system 
and their abstractions. Once the different modules are specified, during the detailed 
design the designer can concentrate on one module at a time. The task in detailed 
design and implementation is essentially to implement the modules so that the 
abstract specifications of each module are satisfied. 

There are two common abstraction mechanisms for software systems: functional 
abstraction and data abstraction. Infunctional abstraction, a module is specified 
by the function it performs. For example, a module to compute the log of a value can 
be abstractly represented by the function log. Similarly, a module to sort an input 
array can be represented by the specification of sorting. Functional abstraction is the 
basis of partitioning in function-oriented approaches. That is, when the problem is 
being partitioned, the overall transformation function for the system is partitioned 
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into smaller functions that comprise the system function. The decomposition of 
the system is in terms of functional modules. 

The second unit for abstraction is data abstraction. Any entity in the real world 
provides some services to the environment to which it belongs. Often the entities 
provide some fixed predefined services. The case of data entities is similar. Cer
tain operations are required from a data object, depending on the object and the 
environment in which it is used. Data abstraction supports this view. Data is not 
treated simply as objects, but is treated as objects with some predefined operations 
on them. The operations defined on a data object are the only operations that can 
be performed on those objects. From outside an object, the intemals of the object 
are hidden; only the operations on the object are visible. Data abstraction forms the 
basis for object-oriented design, which is discussed in the next chapter. In using 
this abstraction, a system is viewed as a set of objects providing some services. 
Hence, the decomposition of the system is done with respect to the objects the 
system contains. 

5.1.3 Modularity 

As mentioned earlier, the real power of partitioning comes if a system is partitioned 
into modules so that the modules are solvable and modifiable separately. It will 
be even better if the modules are also separately compilable (then changes in a 
module will not require recompilation of the whole system). A system is consid
ered modular if it consists of discreet components so that each component can be 
implemented separately, and a change to one component has minimal impact on 
other components. 

Modularity is a clearly a desirable property in a system. Modularity helps in system 
debugging-isolating the system problem to a component is easier if the system 
is modular-in system repair--changing a part of the system is easy as it affects 
few other parts-and in system building-a modular system can be easily built by 
"putting its modules together." 

A software system cannot be made modular by simply chopping it into a set of mod
ules. For modularity, each module needs to support a well-defined abstraction and 
have a clear interface through which it can interact with other modules. Modularity 
is where abstraction and partitioning come together. For easily understandable and 
maintainable systems, modularity is clearly the basic objective; partitioning and 
abstraction can be viewed as concepts that help achieve modularity. 

5.1.4 Top-Down and Bottom-Up Strategies 

A system consists of components, which have components of their own; indeed 
a system is a hierarchy of components. The highest-Ievel component correspond 
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to the total system. To design such a hierarchy there are two possible approaches: 
top-down and boUom-up. The top-down approach starts from the highest-level 
component of the hierarchy and proceeds through to lower levels. By contrast, a 
bouom-up approach starts with the lowest-Ievel component of the hierarchy and 
proceeds through progressively higher levels to the top-level component. 

A top-down design approach starts by identifying the major components of the 
system, decomposing them into their lower-Ievel components and iterating until 
the desired level of detail is achieved. Top-down design methods often result in 
some form of stepwise refinement. Starting from an abstract design, in each step 
the design is refined to a more concrete level, until we reach a level where no 
more refinement is needed and the design can be implemented directly. The top
down approach has been promulgated by many researchers and has been found 
to be extremely useful for design. Most design methodologies are based on the 
top-down approach. 

A boUom-up design approach starts with designing the most basic or primitive 
components and proceeds to higher-Ievel components that use these lower-Ievel 
components. Bottom-up methods work with layers of abstraction. Starting from 
the very boUom, operations that provide a layer of abstraction are implemented. 
The operations of this layer are then used to implement more powerful operations 
and a still higher layer of abstraction, until the stage is reached where the operations 
supported by the layer are those desired by the system. 

A top-down approach is suitable only if the specifications of the system are clearly 
known and the system development is from scratch. Hence, it is a reasonable 
approach if a waterfall type of process model is being used. However, if a system 
is to be built from an existing system, a boUom-up approach is more suitable, as it 
starts from some existing components. So, for example, if an iterative enhancement 
type ofprocess is being followed, in later iterations, the boUom-up approach could 
be more suitable (in the first iteration a top-down approach can be used.) 

Pure top-down or pure bOUom-up approaches are often not practical. For a bottom
up approach to be successful, we must have a good notion of the top to which 
the design should be heading. Without a good idea about the operations needed 
at the higher layers, it is difficult to deterrnine what operations the current layer 
should support. Top-down approaches require some idea about the feasibility of 
the components specified during design. The components specified during design 
should be implementable, which requires some idea about the feasibility of the 
lower-level parts of a component. A common approach to combine the two ap
proaches is to provide a layer of abstraction for the application domain of interest 
through libraries of functions, which contains the functions of interest to the ap
plication domain. Then use a top-down approach to determine the modules in the 
system, assuming that the abstract machine available far implementing the sys
tem provides the operations supported by the abstraction layer. This approach is 
frequently used far developing systems. It can even be cIaimed that it is almost 
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universally used these days, as most developments now make use of the layer of 
abstraction supported in a system consisting of the library functions provided by 
operating systems, programming languages, and special-purpose tools. 

5.2 Module-Level Concepts 

In the previous section we discussed some general design principles. Now we turn 
our attention to some concepts specific to function-oriented design. Before we 
discuss these, let us define what we mean by a module. A module is a logically 
separable part of a program. It is a pro gram unit that is discreet and identifiable 
with respect to compiling and loading. In terms of common programming language 
constructs, a module can be a macro, a function, a procedure (or subroutine ), a 
process, or a package. In systems using functional abstraction, a module is usually 
a procedure of function or a collection of these. 

To produce modular designs, some criteria must be used to select modules so that 
the modules support well-defined abstractions and are solvable and modifiable 
separately. In a system using functional abstraction, coupling and cohesion are two 
modularization criteria, which are often used together. 

5.2.1 Coupling 

Two modules are considered independent if one can function completely without 
the presence of other. Obviously, if two modules are independent, they are solv
able and modifiable separately. However, all the modules in a system cannot be 
independent of each other, as they must interact so that together they produce the 
desired external behavior of the system. The more connections between modules, 
the more dependent they are in the sense that more knowledge about one module 
is required to understand or solve the other module. Hence, the fewer and simpler 
the connections between modules, the easier it is to understand one without un
derstanding the other. The notion of coupling [SMC74, YC79] attempts to capture 
this concept of "how strongly" different modules are interconnected. 

Coupling between modules is the strength of interconnections between modules 
or a measure of interdependence among modules. In general, the more we must 
know about module A in order to understand module B, the more c10sely connected 
A is to B. "Highly coupled" modules are joined by strong interconnections, while 
"loosely coupled" modules have weak interconnections. Independent modules have 
no interconnections. To solve and modify a module separately, we would like the 
module to be loosely coupled with other modules. The choice of modules decides 
the coupling between modules. Because the modules of the software system are 
created during system design, the coupling between modules is largely decided 
during system design and cannot be reduced during implementation. 
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Coupling is an abstract concept and is not easily quantifiable. So, no formulas can 
be given to determine the coupling between two modules. However, some major 
factors can be identified as influencing coupling between modules. Among them 
the most important are the type of connection between modules, the complexity of 
the interface, and the type of information flow between modules. 

Coupling increases with the complexity and obscurity of the interface between 
modules. To keep coupling low we would like to minimize the number of inter
faces per module and the complexity of each interface. An interface of a module is 
used to pass information to and from other modules. Coupling is reduced if only the 
defined entry interface of a module is used by other modules (for example, pass
ing information to and from a module exclusively through parameters). Coupling 
would increase if a module is used by other modules via an indirect and obscure 
interface, like directly using the internals of a module or using shared variables. 

Complexity of the interface is another factor affecting coupling. The more complex 
each interface is, the higher will be the degree of coupling. For example, complexity 
of the entry interface of a procedure depends on the number of items being passed 
as parameters and on the complexity of the items. Some level of complexity of 
interfaces is required to support the communication needed between modules. 
However, often more than this minimum is used. For example, if a fjeld of arecord 
is needed by a procedure, often the entire record is passed, rather than just passing 
that fjeld of the record. By passing the record we are increasing the coupling 
unnecessarily. Essentially, we should keep the interface of a module as simple and 
small as possible. 

The type of information flow along the interfaces is the third major factor affecting 
coupling. There are two kinds of information that can flow along an interface: data 
or contro!. Passing or receiving control information means that the action of the 
module will depend on this control information, which makes it more difficult to 
understand the module and provide its abstraction. Transfer of data information 
means that a module passes as input some data to another module and gets in 
return some data as output. This allows a module to be treated as a simple input
output function that performs some transformation on the input data to produce 
the output data. In general, interfaces with only data communication result in the 
lowest degree of coupljng, followed by interfaces that only transfer control data. 
Coupling is considered highest if the data is hybrid, that is, some data items and 
some control items are passed between modules. The effect of these three factors 
on coupling is summarized in Table 5.1 [SMC74]. 

5.2.2 Cohesion 

We have seen that coupling is reduced when the relationships among elements in 
different modules are minimized. That is, coupling is reduced when elements in 
different modules have little or no bonds between them. Another way of achieving 
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Interface Type of Type of 
Complexity Connection Communication 

Low Simple ·To module Data 
obvious byname control 

High Complicated To internal Hybrid 
obscure elements 

TABLE 5.1. Factors affecting coupling. 

this effect is to strengthen the bond between elements of the same module by 
maximizing the relationship between elements of the same module. Cohesion is 
the concept that tries to capture this intra-module [SMC74, YC79]. With cohesion, 
we are interested in determining how c10sely the elements of a module are related 
to each other. 

Cohesion of a module represents how tightly bound the internal elements of the 
module are to one another. Cohesion of a module gives the designer an idea about 
whether the different elements of a module belong together in the same module. 
Cohesion and coupling are c1early related. U sually, the greater the cohesion of each 
module in the system, the lower the coupling between modules iso This correlation 
is not perfect, but it has been observed in practice. There are several levels of 
cohesion: 

• Coincidental 

• Logical 

• Temporal 

• Procedural 

• Communicational 

• Sequential 

• Functional 

Coincidental is the lowest level, and functional is the highest. These levels do not 
form a linear scale. Functional binding is much stronger than the rest, while the first 
two are considered much weaker than others. Often, many levels can be applicable 
when considering cohesion between two elements of a module. In such situations, 
the highest level is considered. Cohesion of a module is considered the highest 
level of cohesion applicable to all elements in the module. 

Coincidental cohesion occurs when there is no meaningful relationship among the 
elements of a module. Coincidental cohesion can occur if an existing pro gram is 
"modularized" by chopping it into pieces and making different pieces modules. If 
a module is created to save duplicate code by combining some part of code that 
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occurs at many different places, that module is likely to have coincidental cohesion. 
In this situation, the statements in the module have no relationship with each other, 
and if one of the modules using the code needs to be modified and tbis modification 
includes the common code, it is likely that other modules using the code do not 
want the code modified. Consequently, the modification of this "common module" 
may cause other modules to behave incorrectly. The modules using these modules 
are therefore not modifiable separately and have strong interconnection between 
them. We can say that, generally speaking, it is poor practice to create a module 
merely to avoid duplicate code (unless the common code happens to perform some 
identifiable function, in which case the statements will have some relationship 
between them) or to chop a module into smaller modules to reduce the module 
size. 

A module has logical cohesion if there is some logical relationship between the 
elements of a module, and the elements perform functions that fall in the same 
logical class. A typical example of this kind of cohesion is a module that performs 
all the inputs or all the outputs. In such a situation, if we want to input or output 
a particular record, we have to somehow convey this to the module. Often, this 
will be done by passing some kind of special status flag, which will be used to 
determine what statements to execute in the module. Besides resulting in hybrid 
information flow between modules, which is generally the worst form of coupling 
between modules, such a module will usually have tricky and clumsy code. In 
general, logically cohesive modules should be avoided, if possible. 

Temporal cohesion is the same as logical cohesion, except that the elements are 
also related in time and are executed together. Modules that perform activities 
like "initialization," "clean-up," and "termination" are usually temporally bound. 
Even though the elements in a temporally bound module are logically related, 
temporal cohesion is higher than logical cohesion, because the elements are all 
executed together. This avoids the problem of passing the flag, and the code is 
usually simpler. 

A procedurally cohesive module contains elements that belong to a common pro
cedural unit. For example, a loop or a sequence of decision statements in a module 
may be combined to form a separate module. Procedurally cohesive modules often 
occur when modular structure is determined from some form of ftowchart. Proce
dural cohesion often cuts across functionallines. A module with only procedural 
cohesion may contain only part of a complete function or parts of several functions. 

A module with communicational cohesion has elements that are related by a ref
erence to the same input or output data. That is, in a communicationally bound 
module, the elements are together because they operate on the same input or out
put data. An example of this could be a module to "print and punch record." Com
municationally cohesive modules may perform more than one function. However, 
communicational cohesion is sufficiently high as to be generally acceptable if 
alternative structures with higher cohesion cannot be easily identified. 
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When the elements are together in a module because the output of one forms the 
input to another, we get sequential cohesion. If we have a sequence of elements in 
which the output of one forms the input to another, sequential cohesion does not 
provide any guidelines on how to combine them into modules. Different possibili
ties exist: combine all in one module, put the first half in one and the second half in 
another, the first third in one and the rest in the other, and so forth. Consequently, 
a sequentially bound module may contain several functions or parts of different 
functions. Sequentially cohesive modules bear a elose resemblance to the problem 
structure. However, they are considered to be far from the ideal, which is functional 
cohesion. 

Functional cohesion is the strongest cohesion. In a functionally bound module, all 
the elements ofthe module are related to performing a single function. By function, 
we do not mean simply mathematical functions; modules accomplishing a single 
goal are also inc1uded. Functions like "compute square root" and "sort the array" 
are elear examples of functionally cohesive modules. 

How does one determine the cohesion level of a module? There is no mathematical 
formula that can be used. We have to use our judgment for this. A useful technique 
for determining if a module has functional cohesion is to write a sentence that de
scribes, fully and accurately, the function or purpose of the module. The following 
tests can then be made [SMC74]: 

1. If the sentence must be a compound sentence, if it contains a comma, or it 
has has more than one verb, the module is probably performing more than 
one function, and it probably has sequential or communicational cohesion. 

2. If the sentence contains words relating to time, like "first," "next," "when," 
and "after" the module probably has sequential or temporal cohesion. 

3. If the predicate of the sentence does not contain a single specific object fol
lowing the verb (such as "edit all data") the module probably has logical 
cohesion. 

4. Words like "initialize," and "eleanup" imply temporal cohesion. 

Modules with functional cohesion can always be described by a simple sentence. 
However, if adescription is a compound sentence, it does not mean that the module 
does not have functional cohesion. Functionally cohesive modules can also be 
described by compound sentences. If we cannot describe it using a simple sentence, 
the module is not likely to have functional cohesion. 

5.3 Design Notation and Specification 

During the design phase there are two things of interest: the design of the system, the 
producing of which is the basic objective of this phase, and the process of designing 
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itself. lt is for the latter that principles and methods are needed. In addition, while 
designing, a designer needs to record his thoughts and decisions and to represent 
the design so that he can view it and play with it. For this, design notations are 
used. 

Design notations are largely meant to be used during the process of design and 
are used to represent design or design decisions. They are meant largely for the 
designer so that he can quiekly represent his decisions in a compact manner that 
he can evaluate and modify. These notations are frequently graphieal. 

Once the designer is satisfied with the design he has produced, the design is to be 
precisely specified in the form of a document. To specify the design, specification 
languages are used. Producing the design specification is the ultimate objective of 
the design phase. The purpose of this design document is quite different from that 
of the design notation. Whereas a design represented using the design notation is 
largely to be used by the designer, a design specification has to be so precise and 
complete that it can be used as a basis offurther development by otherprogrammers. 
Generally, design specification uses textual structures, with design notation helping 
understanding. 

Here we first describe a design notation-structure charts-that can be used to 
represent a function-oriented design. Then we describe a simple design language 
to specify a design. Though the design document, the final output of the design 
activity, typically also contains other things like design decisions taken and back
ground, its primary purpose is to document the design itself. We will focus on this 
aspect only. 

5.3.1 Structure Charts 

For a function-oriented design, the design can be represented graphieally by struc
ture charts. The structure of a program is made up of the modules of that pro gram 
together with the interconnections between modules. Every computer pro gram has 
a structure, and given a program its structure can be determined. The structure 
chart of a pro gram is agraphie representation of its structure. In a structure chart 
a module is represented by a box with the module name written in the box. An 
arrow from module A to module B represents that module A invokes module B. B 
is called the subordinate of A, and A is called the superiordinate of B. The arrow is 
labeled by the parameters received by B as input and the parameters retumed by B 
as output, with the direction of flow of the input and output parameters represented 
by small arrows. The parameters can be shown to be data (unfilled cirele at the 
tail of the label) or control (filled cirele at the tail). As an example consider the 
structure ofthe following program, whose structure is shown in Figure 5.1. 

mainO 
{ 
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int sum, n, N, a[MAX]; 
readnums(a, &N); sort(a, N); scanf(&n); 
sum = add_nCa, n); printf(sum); 

} 

readnums(a, N) 
int a[], *N; 
{ 

} 

sort(a, N) 
int a[], N; 
{ 

if (a[i] > a[t]) switch(a[i], a[t]); 

} 

/* Add the first n numbers of a */ 
add_n(a, n) 
int a[], n; 
{ 

} 

In general, procedural information is not represented in a strueture ehart, and the 
foeus is on representing the hierarehy of modules. However, there are situations 

main 

~um 

a,~ 

FIGURE 5.1. The structure chart of the sort program. 
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A A 

FIGURE 5.2. Iteration and decision representation. 

where the designer may wish to communicate certain procedural information ex
plicitly, like major loops and decisions. Such information can also be represented 
in a structure chart. For example, let us consider a situation where module A has 
subordinates B, C, and D, and A repeatedly calls the modules C and D. This can 
be represented by a looping arrow around the arrows joining the subordinates C 
and D to A, as shown in Figure 5.2. All the subordinate modules activated within 
a common loop are enclosed in the same looping arrow. 

Major decisions can be represented similarly. For example, if the invocation of 
modules C and D in module A depends on the outcome of some decision, that is 
represented by a small diamond in the box for A, with the arrows joining C and D 
coming out of this diamond, as shown in Figure 5.2. 

Modules in a system can be categorized into few classes. There are some modules 
that obtain information from their subordinates and then pass it to their superiordi
nate. This kind of module is an input module. Similarly, there are output modules. 
that take information from their superiordinate and pass it on to its subordinates. 
As the name suggests, the input and output modules are typically used for input and 
output of data from and to the environment. The input modules get the data from 
the sources and get it ready to be processed, and the output modules take the output 
produced and prepare it for proper presentation to the environment. Then there are 
modules that exist solely for the sake of transforming data into some other form. 
Such a module is called a transform module. Most of the computational modules 
typically fall in this category. Finally, there are modules whose primary concern is 
managing the fiow of data to and from different subordinates. Such modules are 
called coordinate modules. The structure chart representation of the different types 
of modules is shown in Figure 5.3. 

A module can perform functions of more than one type of module. For example, 
the composite module in Figure 5.3 is an input module from the point of view of 
its superiordinate, as it feeds the data Y to the superiordinate. Internally, A is a 
coordinate module and views its job as getting data X from one subordinate and 
passing it to another subordinate, which converts it to Y. Modules in actual systems 
are often composite modules. 
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cf) Data to 
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Input 
Module 

Coordinate 
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FIGURE 5.3. Different types of modules. 

A structure chart is a nice representation mechanism for a design that uses func
tional abstraction. It shows the modules and their call hierarchy, the interfaces 
between the modules, and what information passes between modules. It is a con
venient and compact notation that is very useful while creating the design. That 
is, a designer can make effective use of structure charts to represent the model 
he is creating while he is designing. However, it is not very useful for repre
senting the final design, as it does not give all the information needed about the 
design. For example, it does not specify the scope, structure of data, specifica
tions of each module, etc. Hence, it is generally not used to convey design to the 
implementer. 

We have seen how to determine the structure of an existing program. But once 
the program is written, its structure is fixed and little can be done about altering 
the structure. However, for a given set of requirements many different programs 
can be written to satisfy the requirements, and each program can have a different 
structure. That is, although the structure of a given program is fixed, for a given set of 
requirements, programs with different structures cali be obtained. The objective of 
the design phase using function-oriented method is to control the eventual structure 
of the system by fixing the structure during design. 
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5.3.2 Specification 

Using some design rules or methodology, a conceptual design of the system can 
be produced in terms of a structure chart. As seen earlier, in a structure chart each 
module is represented by a box with aname. The functionality ofthe module is es
sentially communicated by the name of the box, and the interface is communicated 
by the data items labeling the arrows. This is all right while the designer is design
ing but inadequate when the design is to be communicated to other programmers 
or archived for future reference. To avoid these problems, the design needs to be 
formally specified. The design specification is then communicated in the design 
document, which is used as the reference for the design phase for later activities 
like detailed design and implementation. 

As the design document is the means by which the design is communicated, it 
should contain all information relevant to future phases. First let us decide what a 
document-specifying system design should contain. A design specification should 
contain: 

• Problem specification 

• Major data structures 

• Modules and their specifications 

• Design decisions 

The requirements document specifies the problem in the terminology of the prob
lem domain. Often, before starting design, the requirements are translated into a 
specification of a problem more suited for design purposes. In this sense, problem 
specification or restatement is the first step in the design process. 

During system design, the major data structures for the software are identified; 
without these, the system modules cannot be meaningfully defined during design. 
In the design specification, a formal definition of these data structures should be 
given. 

Module specification is the major part of system design specification. All mod
ules in the system should be identified when the system design is complete, and 
these modules should be specified in the document. During system design only 
the module specification is obtained, because the internal details of the modules 
are defined later. To specify a module, the design document must specify (a) the 
interface of the module (all data items, their types, and whether they are for input 
andJor output), (b) the abstract behavior ofthe module (what the module does) by 
specifying the module's functionality or its input/output behavior, and (c) all other 
modules used bythe module being specified-this information is quite useful in 
maintaining and understanding the design. 

Hence, a design specification will necessarily contain specification of the major 
data structures and modules in the system. After a design is approved (using some 
verification mechanism), the modules will have to be implemented in the target 
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language. This requires that the module "headers" for the target language first be 
created from the design. This translation of the design for the target language can 
introduce errors if it's done manually. To eliminate these translation errors, if the 
target language is known (as is generally the case after the requirements have been 
specified), it is better to have a design specification language whose module speci
fications can be used almost directly in programming. This not only minimizes the 
translation errors that may occur, but also reduces the effort required for translating 
the design to programs. It also adds incentive for designers to properly specify their 
design, as the design is no longer a "mere" document that will be thrown away after 
review-it will now be used directly in coding. In the case study, a design speci
fication language c10se to C has been used. From the design, the module headers 
for C can easily be created with some simple editing. 

To aid the comprehensibility of the design, all major design decisions made by the 
designers during the design process should be explained explicitly. The choices that 
were available and the reasons for making a particular choice should be explained. 
This makes a design more visible and will help in understanding the design. 

5.4 Structured Design Methodology 

Creating the software system design is the major concern of the design phase. 
Many design techniques have been proposed over the years to provide some dis
cipline in handling the complexity of designing large systems. The aim of design 
methodologies is not to reduce the process of design to a sequence of mechanical 
steps but to provide guidelines to aid the designer during the design process. Here 
we describe the structured design methodology [SMC74, YC79] for developing 
system designs. 

Structured design methodology (SDM) views every software system as having 
some inputs that are converted into the desired outputs by the software system. The 
software is viewed as a transformation function that transforms the given inputs 
into the desired outputs, and the central problem of designing software systems is 
considered to be properly designing this transformation function. Due to this view 
of software, the structured design methodology is primarily function-oriented and 
relies heavily on functional abstraction and functional decomposition. 

The concept of the structure of a pro gram lies at the heart of the structured de
sign method. During design, structured design methodology aims to control and 
inftuence the structure of the final program. The aim is to design a system so that 
programs iinplementing the design would have a nice hierarchical structure, with 
functionally cohesive modules and as few interconnections between modules as 
possible. 
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In properly designed systems it is often the case that a module with subordinates 
does not actually perform much computation. The bulk of actual computation is 
performed by its subordinates, and the module itself largely coordinates the data 
ftow between the subordinates to get the computation done. The subordinates in 
turn can get the bulk of their work done by their subordinates until the "atomic" 
modules, which have no subordinates, are reached. Factoring is the process of 
decomposing a module so that the bulk of its work is done by its subordinates. A 
system is said to be completely factored if all the actual processing is accomplished 
by bottom-Ievel atomic modules and if nonatomic modules largely perform the jobs 
of control and coordination. SDM attempts to achieve a structure that is elose to 
being completely factored. 

The overall strategy is to identify the input and output streams and the primary 
transformations that have to be performed to produce the output. High-level mod
ules are then created to perform these major activities, which are later refined. 
There are four major steps in this strategy: 

1. Restate the problem as a data ftow diagram 

2. Identify the input and output data elements 

3. First-level factoring 

4. Factoring of input, output, and transform branches 

We will now discuss each of these steps in more detail. The design of the case 
study using structured design will be given later. For illustrating each step of the 
methodology as we discuss them, we consider the following problem: there is a 
text file containing words separated by blanks or new lines. We have to design a 
software system to determine the number of unique words in the file. 

5.4.1 Restate the Problem as a Data Flow Diagram 

To use the SD methodology, the first step is to construct the data ftow diagram 
for the problem. We studied data ftow diagrams in Chapter 3. However, there is a 
fundamental difference between the DFDs drawn during requirements analysis and 
during structured design. In the requirements analysis, a DFD is drawn to model 
the problem domain. The analyst has little control over the problem, and hence his 
task is to extract from the problem all the information and then represent it as a 
DFD. 

During design activity, we are no longer modeling the problem domain, but rather 
are dealing with the solution domain and developing a model for the eventual 
system. That is, the DFD during design represents how the data will ftow in the 
system when it is built. In this modeling, the major transforms or functions in the 
software aredecided, and the DFD shows the major transforms that the software 
will have and how the data will ftow through different transforms. So, drawing 
a DFD for design is a very creative activity in which the designer visualizes the 
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FIGURE 5.4. Data ftow diagram of an ATM. 

eventual system and its processes and data flows. As the system does not yet exist, 
the designer has complete freedom in creating a DFD that will solve the problem 
stated in the SRS. The general rules of drawing a DFD remain the same; we 
show what transforms are needed in the software and are not concemed with the 
logic for implementing them. Consider the example of the simple automated teller 
machine that allows customers to withdraw money. A DFD for this ATM is shown 
in Figure 5.4. 

There are two major streams of input data in this diagram. The first is the account 
number and the code, and the second is the amount to be debited. The DFD is 
self-explanatory. Notice the use of * at different places in the DFD. For example, 
the transform "validate," which verifies if the account number and code are valid, 
needs not only the account number and code, but also information from the system 
database to do the vaJidation. And the transform debit account has two outputs, 
one used for recording the transaction and the other to update the account. 

As another example, consider the problem of determining the number of different 
words in an input file. The data flow diagram for this problem is shown in Figure 5.5 

This problem has only one input data stream, the input file, while the desired 
output is the count of different words in the file. To trans form the input to the 
desired output, the first thing we do is form a list of aB the words in the file. It is 
best to then sort the list, as this wilI make identifying different words easier. This 
sorted list is then used to count the number of different words, and the output of 
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this transform is the desired count, which is then printed. This sequence of data 
transformation is what we have in the data ftow diagram. 

5.4.2 Identify the Most Abstract Input and Output Data Elements 

Most systems have some basic transformations that perform the required opera
tions. However, in most cases the transformation cannot be easily applied to the 
actual physical input and produce the desired physical output. Instead, the input is 
first converted into a form on which the transformation can be applied with ease. 
Similarly, the main transformation modules often produce outputs that have to be 
converted into the desired physical output. The goal of this second step is to sepa
rate the transforms in the data ftow diagram that convert the input or output to the 
desired format from the ones that perform the actual transformations. 

For this separation, once the data ftow diagram is ready, the next step is to identify 
the highest abstract level of input and output. The most abstract input data elements 
are those data elements in the data ftow diagram that are furthest removed from the 
physical inputs but can still be considered inputs to the system. The most abstract 
input data elements often have little resemblance to the actual physical data. These 
are often the data elements obtained after operations like error checking, data 
validation, proper formatting, and conversion are complete. 

Most abstract input (MAI) data elements are recognized by starting from the phys
ical inputs and traveling toward the outputs in the data ftow diagram, until the data 
elements are reached that can no longer be considered incoming. The aim is to go 
as far as possible from the physical inputs, without losing the incoming nature of 
the data element. This process is performed for each input stream. Identifying the 
most abstract data items represents a value judgment on the part of the designer, 
but often the choice is obvious. 

Similarly, weidentify the most abstract output datu elements (MAO) by starting 
from the outputs in the data ftow diagram and traveling toward the inputs. These 
are the data elements that are most removed from the actual outputs but can still be 
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considered outgoing. The MAO data elements mayaiso be considered the logical 
output data items, and the transforms in the data ftow diagram after these data 
items are basically to convert the logical output into a form in which the system is 
required to produce the output. 

There will usually be some transforms left between the most abstract input and 
output data items. These central transforms perform the basic transformation for 
the system, taking the most abstract input and transforming it into the most abstract 
output. The purpose of having central transforms deal with the most abstract data 
items is that the modules implementing these transforms can concentrate on per
forming the transformation without being concemed with converting the data into 
proper format, validating the data, and so forth. It is worth noting that if a central 
transform has two outputs with a + between them, it often indicates the presence 
of a major decision in the transform (which can be shown in the structure chart). 

Consider the data ftow diagram shown in Figure 5.5. The arcs in the data ftow 
diagram are the most abstract input and most abstract output. The choice of the 
most abstract input is obvious. We start following the input. First, the input file is 
converted into a word list, which is essentially the input in a different form. The 
sorted word list is still basically the input, as it is still the same list, in a different 
order. This appears to be the most abstract input because the next data (i.e., count) 
is not just another form of the input data. The choice of the most abstract output 
is even more obvious; count is the natural choice (a data that is a form of input 
will not usually be a candidate for the most abstract output). Thus we have one 
central transform, count-the-number-of-different-words, which has one input and 
one output data item. 

Considernow the data flow diagram ofthe automated teller shown in Figure 5.4. The 
two most abstract inputs are the dollar amount and the validated ac count number. 
The validated account number is the most abstract input, rather than the account 
number read in, as it is still the input-but with a guarantee that the account number 
is valid. The two abstract outputs are obvious. The abstract inputs and outputs are 
marked in the data flow diagram. 

5.4.3 First-Level Factoring 

Having identified the central transforms and the most abstract input and output 
data items, we are ready to identify some modules for the system. We first specify 
a main module, whose purpose is to invoke the subordinates. The main module 
is therefore a coordinate module. For each of the most abstract input data items, 
an immediate subordinate module to the main module is specified. Each of these 
modules is an input module, whose purpose is to deliver to the main module the 
most abstract data item for which it is created. 

Similarly, for each most abstract output data item, a subordinate module that is an 
output module, that accepts data from the main module is specified. Each of the 
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FIGURE 5.6. First-level factoring. 

arrows connecting these input and output subordinate modules are labeled with the 
respective abstract data item flowing in the proper direction. 

Finally, for each central transform, a module subordinate to the main one is spec
ified. These modules will be transform modules, whose purpose is to accept data 
from the main module, and then return the appropriate data back to the main mod
ule. The data items coming to a trans form module from the main module are on the 
incoming arcs of the corresponding transform in the data flow diagram. The data 
items returned are on the outgoing arcs of that transform. Note that here a module 
is created for a transform, while input/output modules are created for data items. 
The structure after the first-level factoring of the word-counting problem (its data 
flow diagram was given earlier) is shown in Figure 5.6. 

In this example, there is one input module, which returns the sorted word list to 
the main module. The output module takes from the main module the value of the 
count. There is only one central transform in this example, and a module is drawn 
for that. Note that the data items traveling to and from this transformation module 
are the same as the data items going in and out of the central transform. 

Let us examine the data flow diagram of the ATM. We have already seen that this 
has two most abstract inputs, two most abstract outputs, and two central transforms. 
Drawing a module for each of these, we get the structure chart shown in Figure 5.7. 

As we can see, the first-level factoring is straightforward, after the most abstract 
input and output data items are identified in the data flow diagram. The main module 
is the overall control module, which will form the main program or procedure 
in the implementation of the design. It is a coordinate module that invokes the 
input modules to get the most abstract data items, passes these to the appropriate 
transform modules, and delivers the results of the transform modules to other 
trans form modules until the most abstract data items are obtained. These are then 
passed to the output modules. 
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FIGURE 5.7. First-level factoring for ATM. 
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5.4.4 Factoring the Input, Output, and Transform Branches 

The first-level factoring results in a very high-level structure, where each subordi
nate module has a lot of processing to do. To simplify these modules, they must be 
factored into subordinate modules that will distribute the work of a module. Each 
of the input, output, and transformation modules must be considered for factoring. 
Let us start with the input modules. 

The purpose of an input module, as viewed by the main pro gram, is to produce 
some data. To factor an input module, the transform in the data ftow diagram that 
produced the data item is now treated as a central transform. The process performed 
for the first-level factoring is repeated here with this new central transform, with 
the input module being considered the main module. A subordinate input module 
is created for each input data stream coming into this new central transform, and 
a subordinate transform module is created for the new central transform. The new 
input modules now created can then be factored again, until the physical inputs are 
reached. Factoring of input modules will usually not yield any output subordinate 
modules. 
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FIGURE 5.8. Factoring the input module. 
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The factoring ofthe input module get-sorted-list in the first-level structure is shown 
in Figure 5.8. The transform producing the input retumed by this module (i.e., the 
sort transform) is treated as a central transform. Its input is the word list. Thus, in 
the first factoring we have an input module to get the list and a transform module 
to sort the list. The input module can be factored further, as the module needs to 
perform two functions, geuing a word and then adding it to the list. Note that the 
looping arrow is used to show the iteration. 

The factoring of the output modules is symmetrical to the factoring of the input 
modules. For an output module we look at the next trans form to be applied to 
the output to bring it closer to the ultimate desired output. This now becomes the 
central transform, and an output module is created for each data stream going out 
of this transform. During the factoring of output modules, there will usually be no 
input modules. In our example, there is only one transform after the most abstract 
output, so this factoring need not be done. 

If the data flow diagram of the problem is sufficiently detailed, factoring of the 
input and output modules is straightforward. However, there are no such rules 
for factoring the central transforms. The goal is to determine subtransforms that 
will together compose the overall transform and then repeat the process for the 
newly found transforms, until we reach the atomic modules. Factoring the central 
transform is essentially an exercise in functional decomposition and will depend 
on the designers' experience and judgment. 

One way to factor a transform module is to treat it as a problem in its own right and 
start with a data flow diagrarn for it. The inputs to the data flow diagram are the data 
coming into the module and the outputs are the data being retumed by the module. 
Each transform in this data flow diagram represents a subtransform of this trans
form. The central transform can be factored by creating a subordinate transform 
module for each of the transforms in this data flow diagram. This process can be 
repeated for the new trans form modules that are created, until we reach atomic mod
ules. The factoring of the central transform count-the-number-of-different-words 
is shown in Figure 5.9. 

Count Number of 
Different Words 

word 11f1ag 

FIGURE 5.9. Factoring the central transform. 
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This was a relatively simple transform, and we did not need to draw the data flow 
diagram. To determine the number of words, we have to get a word repeatedly, 
determine if it is the same as the previous word (for a sorted list, this checking is 
sufficient to determine if the word is different from other words), and then count 
the word if it is different. For each of the three different functions, we have a 
subordinate module, and we get the structure shown in Figure 5.9. 

It should be clear that the structure that is obtained depends a good deal on what 
are the most abstract inputs and most abstract outputs. And as mentioned earlier, 
determining the most abstract inputs and outputs requires making a judgment. 
However, if the judgment is different, though the structure changes, it is not affected 
dramatically. The net effect is that a bubble that appears as a transform module at 
one level may appear as a transform module at another level. For example, suppose 
in the word-counting problem we make a judgment that word-list is another form 
of the basic input but sorted-word-list is not. If we use word-list as the most abstract 
input, the net result is that the transform module corresponding to the sort bubble 
shows up as a transform module one level above. That is, now it is a central 
transform (i.e., subordinate to the main module) rather than a subordinate to the 
input module "get-sorted-word-list." So, the SDM has the desired property that it 
is not very sensitive to some variations in the identification of the most abstract 
input and most abstract output. 

5.4.5 Design Heuristics 

The design steps mentioned earlier do not reduce the design process to aseries of 
steps that can be followed blindly. The strategy requires the designer to exercise 
sound judgment and common sense. The basic objective is to make the program 
structure reftect the problem as closely as possible. With this in mind the struc
ture obtained by the methodology described earlier should be treated as an initial 
structure, which may need to be modified. Here we mention some heuristics that 
can be used to modify the structure, if necessary. It must be kept in mind that these 
are merely pointers to help the designer decide how the structure can be modified. 
The designer is still the final judge of whether a particular heuristic is useful for a 
particular application or not. 

Module size is often considered an indication of module complexity. In terms of 
the structure of the system, modules that are very large may not be implementing a 
single function and can therefore be broken into many modules, each implementing 
a different function. On the other hand, modules that are too small may not require 
any additional identity and can be combined with other modules. 

However, the decision to split a module or combine different modules should not 
be based on size alone. Cohesion and coupling of modules should be the primary 
guiding factors. A module should be split into separate modules only ifthe cohesion 
of the original module was low, the resulting modules have a higher degree of 
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cohesion, and the coupling between modules does not increase. Similarly, two or 
more modules should be combined only if the resulting module has a high degree of 
cohesion and the coupling of the resulting module is not greater than the coupling 
of the submodules. Furthermore, a module usually should not be split or combined 
with another module if it is subordinate to many different modules. As a rule of 
thumb, the designer should take a hard look at modules that will be larger than 
about 100 lines of source code or will be less than a couple of lines. 

Another parameter that can be considered while "fine-tuning" the structure is the 
fan-in and fan-out of modules. Fan-in of a module is the number of arrows coming 
in the module, indicating the number of superiordinates of a module. Fan-out of a 
module is the number of arrows going out of that module, indicating the number 
of subordinates of the module. A very high fan-out is not very desirable, as it 
means that the module has to control and coordinate too many modules and may 
therefore be too complex. Fan-out can be reduced by creating a subordinate and 
making many of the current subordinates subordinate to the newly created module. 
In general the fan-out should not be increased above five or six. 

Whenever possible, the fan-in should be maximized. Of course, this should not 
be obtained at the cost of increasing the coupling or decreasing the cohesion of 
modules. For example, implementing different functions into a single module, 
simply to increase the fan-in, is not a good idea. Fan-in can often be increased by 
separating out common functions from different modules and creating a module 
to implement that function. 

Another important factor that should be considered is the correlation of the scope 
of effect and scope of control. The scope of effect of adecision (in a module) is 
the collection of all the modules that contain any processing that is conditional on 
that decision or whose invocation is dependent on the outcome of the decision. 
The scope of control of a module is the module itself and all its subordinates (not 
just the immediate subordinates). The system is usually simpler when the scope of 
effect of adecision is a subset of the scope of control of the module in which the 
decision is located. Ideally, the scope of effect should be limited to the modules 
that are immediate subordinates of the module in which the decision is located. 
Violation of this rule of thumb often results in more coupling between modules. 

There are some methods that a designer can use to ensure that the scope of effect 
of adecision is within the scope of control of the module. The decision can be 
removed from the module and "moved up" in the structure. Altematively, modules 
that are in the scope of effect but are not in the scope of control can be moved down 
the hierarchy so that they fall within the scope of control. 

5.4.6 Transaction Analysis 

The structured design technique discussed earlier is called transform analysis, 
where most of the transforms in the data f10w diagram have a few inputs and a 
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few outputs. There are situations where a transform splits an input stream into 
many different substreams, with a different sequence of transforms specified for 
the different substreams. For example, this is the case with systems where there 
are many different sets of possible actions and the actions to be performed depend 
pon the input command specified. In such situations the transform analysis can be 
supplemented by transaction analysis. and the detailed data ftow diagram of the 
transform splitting the input may look like the DFD shown in Figure 5.10. 

The module splitting the input is called the transaction center; it need not be a 
central transform and may occur on either the input branch or the output branch 
of the data ftow diagram of the system. One of the standard ways to convert a data 
ftow diagram ofthe form shown in Figure 5.10 into a structure chart is to have an 
input module that gets the analyzed trans action and a dispatch module that invokes 
the modules for the different transactions. This structure is shown in Figure 5.11. 

For smaller systems the analysis and the dispatching can be done in the transaction 
center module itself, giving rise to a ftatter structure. For designing systems that 

FIGURE 5.11. Factored trans action center. 
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require trans action analysis, start with a data ftow diagram, as in transform analysis, 
and identify the transform centers. Factor the data ftow diagram, as is done in 
transform analysis. For the modules corresponding to the transform centers, draw 
the detailed data ftow diagram, which will be of the form shown in Figure 5.11. 
Choose one of the transaction-centered organizations, either one with aseparate 
dispatch and input module or one with all combined in one module. Specify one 
subordinate module for each trans action. Temptations to combine many similar 
transactions into one module should be avoided, as it would result in a logically 
cohesive module. Then each transaction module should be factored, as is done 
in transform analysis. There are usually many distinct actions that need to be 
performed for a transaction; they are often specified in the requirements for each 
transaction. In such cases one subordinate module to the trans action module should 
be created for each action. Further factoring of action modules into many detailed 
action modules may be needed. In many transaction-oriented systems, there is a 
lot of commonality of actions among the different transactions. This commonality 
should be exploited by sharing the modules at either the action level or the detailed 
action level. 

5.4.7 Discussion 

No design methodology reduces design to aseries of steps that can be mechanically 
executed. All design methodologies are, at best, a set of guidelines that, if applied, 
will most likely give a design that will satisfy the design objectives. The basic 
objective is to produce a design that is modular and simple. One way to achieve 
modularity is to have a design that has highly cohesive modules with low coupling 
between different modules. In other words, the basic objective of the design activity 
using a function-oriented approach is to create an architecture, that, if implemented, 
will satisfy the SRS, and that contains cohesive modules that have low coupling 
with others. Structured design methodology is an approach for creating a design 
that is likely to satisfy this objective. Now that we have studied the methodology, 
let us see how it actually achieves this goal. 

The basic principle behind the SDM, as with most other methodologies, is problem 
partitioning, in which the problem is partitioned into subproblems that can be 
solved separately. In SDM, at the very basic level, this is done by partitioning the 
system into subsystems that deal with input, subsystems that deal with output, and 
subsystems that deal with data transformation. 

The rationale behind this partitioning is that in many systems, particularly data 
processing systems, a good part of the system code deals with managing the inputs 
and outputs. And the components dealing with inputs have to deal with issues of 
screens, reading data, formats, eITors, exceptions, completeness of information, 
structure of the information, etc. Similarly, the modules dealing with output have 
to prepare the output in presentation formats, make charts, produce reports, etc. 
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Hence, for many systems, it is indeed the case that a good part of the software 
has to deal with inputs and outputs. The actual transformation in the system is 
frequently not very complex-it is dealing with data and getting it in proper form 
for performing the transformation or producing the output in the desired form that 
requires considerable processing. 

Structured design methodology clearly separates the system at the very top level 
into various subsystems, one for managing each major input, one for managing each 
major output, and one for each major transformation. The modules performing the 
transformation deal with data at an abstract level, that is, in the form that is most 
convenient for processing. Due to this, these modules can focus on the conceptual 
problem of how to perform the transformation without bothering with how to 
obtain "clean" inputs or how to "present" the output. And these subsystems are 
quite independent of each other, interacting only through the main module. Hence, 
this partitioning leads to independent subsystems that do not interact directIy, and 
hence can be designed and developed separately. 

This partitioning is at the heart of SDM. In the SDM itself, this partitioning is 
obtained by starting with a data ftow diagram. However, the basic idea of the SDM 
can be effectively used even if one wants to go directly to the first structure (without 
going through a DFD). 

Besides this central idea, another basic idea behind the SDM is that processing of an 
input subsystem should be done in a progressive manner, starting from the raw input 
and progressively applying transformations to eventually reach the most abstract 
input level (what this input subsystem has to produce). Similar is the case with the 
structure for the subsystems dealing with outputs. The basic idea here is to separate 
the different transformations performed on the input before it is in a form ready 
to be "consumed." And if the SDM is followed carefully, this leads to a "thin and 
tall" tree as a structure for the input or output subsystem. For example, if an input 
goes through aseries of bubbles in the DFD before it is considered most abstract, 
the structure for this will be a tree with each node having two subordinates--{)ne 
obtaining the input data at its level of abstraction and the other a trans form module 
that is used to transform the data to the next abstract level (which is passed to 
the superiordinate). Similar effect can also be obtained by the main input module 
having one input module and then aseries of transform modules, each performing 
one transform. In other words, the basic idea in SDM for processing an input is 
to partition the processing of an input into aseries of transforms. As long as this 
approach is followed, it is not terribly important how the structure for the input 
subsystem is obtained. 

These ideas that the methodology uses to partition the problem into smaller mod
ules lead to.a structure in which different modules can be solved separately and the 
connections between modules are minimized (i.e., the coupling is reduced)-most 
connections between modules go through some coordinate modules. These ideas 
of structuring are sound and lead to a modular structure. It is important that these 
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fundamental ideas behind the SDM be kept in mind when using this approach. It 
may not be so important to follow SDM down to the lowest detail. This is how ex
perienced designers use most methodologies; the detailed steps of the methodology 
are not necessarily followed, but the philosophy iso Many experienced designers 
do not start with a detailed DFD when using the SDM; they prefer to work directly 
with the structure or with a very high-level DFD. But they do use these principles 
when creating the structure. Such an approach is recommended only when one has 
some experience with the SDM. 

5.5 Verification 

The output of the system design phase, like the output of other phases in the 
development process, should be verified before proceeding with the activities of 
the next phase. Unless the design is specified in a formal, executable language, the 
design cannot be executed for verification. Other means for verification have to be 
used. The most common approach for verification is design reviews or inspections 
(although sometimes these terms mean different things, we will not distinguish 
between the two). We will discuss this approach here. 

5.5.1 Design Reviews 

The purpose of design reviews is to ensure that the design satisfies the require
ments and is of "good quality." If errors are made during the design process, they 
will ultimately reflect themselves in the code and the final system. As the cost of 
removing faults caused by errors that occur during design increases with the delay 
in detecting the errors, it is best if design errors are detected early, before they 
manifest themselves in the system. Detecting errors in design is the aim of design 
reviews. 

The system design review process is similar to the other reviews, in that a group 
of people get together to discuss the design with the aim of revealing design errors 
or undesirable properties. The review group must include a member of both the 
system design team and the detailed design team, the author of the requirements 
document, the author responsible for maintaining the design document, and an 
independent software quality engineer. 

The review can be held in the same manner as the requirement review. Each mem
ber studies the design before the meeting, and with the aid of a checklist, marks 
items that the reviewer feels are incorrect or need clarification. The member asks 
questions and the chief designer tries to explain the situation. Discussion ensues, 
and during its course design errors are revealed. 

As with any review, it should be kept in mind that the aim of the meeting is 
to uncover design errors not to try to fix them; fixing is done later. Also, the 
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psychological frame of mind should be healthy, and the designer should not be put 
in a defensive position. The meeting ends with a list of action items, which are 
later acted on by the design team. Further reviews may be organized, if needed. 

The number of ways in which errors can come in a design is limited only by the cre
ativity of the designer. However, there are some forms of errors that are more often 
observed. Here we mention some of these [Dun84]. Perhaps the most significant 
design error is omission or misinterpretation of specified requirements. Clearly, 
if the system designer has misinterpreted or not accounted for some requirement 
it will be reflected later as a fault in the system. Sometimes, this design error is 
caused by ambiguities in the requirements. 

There are some other quality factors that are not strictly design errors but that have 
implications on the reliability and maintainability of the system. An example of 
this is weak modularity (that is, weak cohesion and/or strong coupling). During 
reviews, elements of design that are not conducive to modification and expansion 
or elements that fail to conform to design standards should also be considered 
"errors." 

A Sampie Checklist: The use of checklists can be extremely useful for any review. 
Tbe checklist can be used by each member during private study of the design and 
during the review meeting. For best results the checklist should be tailored to the 
project at hand, to uncover problem-specific errors. Here we list a few general 
items that can be used to construct achecklist for a design review [Dun84]: 

• Is each of the functional requirements taken into account? 

• Are there analyses to demonstrate that performance requirements can be met? 

• Are an assumptions explicitIy stated, and are they acceptable? 

• Are there any limitations or constraints on the design beyond those in the 
requirements? 

• Are extemal specifications of each module completely specified? 

• Have exceptional conditions been handled? 

• Are an the data formats consistent with the requirements? 

• Are the operator and user interfaces properly addressed? 

• Is the design modular, and does it conform to local standards? 

• Are the sizes of data structures estimated? Are provisions made to guard 
against overflow? 

5.5.2 Automated Cross-Checking 

One of the important issues during system design verification is whether the design 
is intemally consistent. For example, those modules used in a module that is defined 
in the system design must also be defined in the design. One should also check 
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5.6 Metries 

whether the interface of a module is consistent with the way in which other modules 
use it. Other internal consistency issues can be consistent use of data structures and 
whether data usage is consistent with dec1aration. These consistency issues can be 
checked during design review and is. usually the place where they are checked if 
no automated help is available. 

However, if the design is expressed in a language designed for machine processing, 
most consistency checking can be automated. For example, if a language like 
PDL (described in a later chapter) is used, the design can be "compiled" to check 
for consistency. Similarly, the method used to express the system design of the 
case study later in this chapter can be formalized to make it suitable for machine 
processing. The basic requirement is that the data and module definitions be given 
in a defined format that is suitable for checking. 

We have already seen that the basic purpose of metrics is to provide quantitative data 
to the management process, which is useful for effective monitoring and control. 
For this purpose, some quantitative information in the form of metrics flows from 
each step in the development process to the management process. The first question 
we must address is what type of metrics from the system design phase are useful 
to the management process. 

The general process metrics of interest from each major step are the cost or total 
effort spent in the activity, the schedule, and the number and distribution of errors 
detected by the reviews. The cost and schedule metrics are largely needed for track
ing if the project is progressing according to the plan, and if not, what actions should 
be performed by the project management. These are typically tracked throughout 
the phase, though at the end of a defined phase, its effect on the overall project 
schedule and cost can be better understood. If the cost and schedule of the phase is 
different from what was specified in the plan, this implies that either the project is 
not being managed properly and hence there are cost and schedule overruns or that 
the earlier estimates were incorrect. In the first case, c10ser monitoring and tighter 
control results. In the second case, cost and schedule are estimated again after the 
design, and if the revised estimates of cost and schedule are different from earlier 
estimates, a renegotiation of the project and modification of the plan results. 

Quality is monitored generally through reviews. As discussed in Chapter 3, if the 
process is under statistical control, one can expect density and distribution of errors 
found by reviews in the design of this project to be similar to what was found in 
earlier projects. Using the past history about design reviews (i.e., the model that has 
been built to predict the density and distribution of errors) and the current review 
data, the quality of the design can be estimated. At least, it can be ensured that the 
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design of this project is as good as the design of earlier projects done using the 
existing process. 

Size is always a product metric of interest, as size is the single most infiuential factor 
deciding the cost of the project. As the actual size of the project is known only 
when the project ends, at early stages the project size is only an estimate. As we saw 
in Figure 4.1, our ability to estimate size becomes more accurate as development 
proceeds. Hence, after design, size (and cost) re-estimation are typically done by 
project management. After design, as all the modules in the system and major data 
structures are known, the size of the final system can be estimated quite accurately. 

For estimating the size, the total number of modules is an important metric. This 
can be easily obtained from the design. By using an average size of a module, from 
this metric the final size in LOC can be estimated. Altematively, the size of each 
module can be estimated, and then the total size of the system will be estimated as 
the sum of all the estimates. As a module is a small, clearly specified programming 
unit, estimating the size of a module is relatively easy. 

Besides the size metric, the other product metric of interest at design time is design 
quality. Before we can discuss metrics for quality, we must agree on what is a 
"good" design. We said earlier that simplicity is the most important design quality 
attribute, as it directly affects the testability and maintainability of the software. 
Complexity metrics are frequently used to quantify simplicity. 

A possible use of complexity metrics at design time is to improve the design by 
reducing the complexity of the modules that have been found to be most complex. 
This will directly improve the testability and maintainability. If the complexity 
cannot be reduced because it is inherent in the problem, complexity metrics can be 
used to highlight the more complex modules. As complex modules are generally 
more error-prone, this feedback can be used by project management to ensure that 
strict quality assurance is performed on these modules as they evolve. OveralI, 
complexity metrics are of great interest at design time and they can be used to 
evaluate the quality of design, improve the design, and improve quality assurance 
of the project. We will describe some of the metrics that have been proposed to 
quantify the complexity of design and some empirical evidence of their use. 

5.6.1 Network Metries 

Network metrics for design focus on the structure chart (mostly the call graph 
component of the structure chart) and define some metrics of how "good" the 
structure or network is in an effort to quantify the complexity of the call graph. As 
coupling of a module increases if it is called by more modules, a good structure 
is considered one that has exactIy one caller. That is, the call graph structure is 
simplest if it is a pure tree. The more the structure chart deviates from a tree, 
the more complex the system. Deviation of the tree is then defined as the graph 
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impurity of the design [YW78]. Graph impurity can be defined as 

Graph impurity = n - e - 1 

where n is the number of nodes in the .structure chart and e is the number of edges. 
As in a pure tree the total number of nodes is one more than the number of edges, 
the graph impurity for a tree is O. Each time a module has a fan-in of more than 
one, the graph impurity increases. This is the major drawback of this approach; it 
ignores the common use of some routines like library or support routines. In the 
design evaluation tool that we use (described later), we do not consider the lowest
level nodes for graph impurity because we believe that most often the lowest-Ievel 
modules are the ones that are used by many different modules, particularly if the 
structure chart was factored. Library routines are also at the lowest level of the 
structure chart (even if they have a structure of their own, it does not show in the 
structure chart of the application using the routine). 

Other network metrics have also been defined. For most of these metrics, significant 
cOITelations with properties of interest have not been established. Hence, their use 
is limited to getting some idea about the structure of the design. 

5.6.2 Stability Metries 

We know that maintainability of software is a highly desired quality attribute. 
Maintenance activity is hard and eITor-prone as changes in one module require 
changes in other modules to maintain consistency, which require further changes, 
and so on. It is c1early desirable to minimize this ripple effect of performing a 
change, which is largely determined by the structure of the software. Stability of 
a design is a metric that tries to quantify the resistance of a design to the potential 
ripple effects that are caused by changes in modules [YC85]. The higher the stability 
of a program design, the better the maintainability of the program. Here we define 
the stability metric as defined in [YC85]. 

At the lowest level, stability is defined for a module. From this, the stability of the 
whole system design can be obtained. Tbe aim is to define a measure so that the 
higher the measure the less the ripple effect on other modules that in some way are 
related to this module. Tbe modules that can be affected by change in a module are 
the modules that invoke the module or share global data (or files) with the module. 
Any other module will c1early not be affected by change in a module. Tbe potential 
ripple effect is defined as the total number of assumptions made by other modules 
regarding the module being changed. Hence, counting the number of assumptions 
made by other modules is central to deterrnining the stability of a module. 

As at design time only the interfaces of modules are known and not their internals, 
for ca1culating design stability only the assumptions made about the interfaces need 
be considered. The interface of a module consists of all elements through which 
this module can be affected by other modules, Le., through which this module can 



www.manaraa.com

5.6. Metries 245 

be coupled with other modules. Hence, it consists of the parameters of the modules 
and the global data the module uses. Once the interface is identified, the structure 
of each element of the interface is examined to determine all the minimal entities 
in this element for which assumptions can be made. The minimal entities generally 
are the constituents of the interface element. For example, arecord is broken into 
its respective fields as a calling module can make assumptions about a particular 
field. 

For each minimal entity at least two categories of assumptions can be made-about 
the type of the entity and about the value of the entity. (The assumption about the 
type is typically checked by a compiler if the programming language supports 
strong typing.) Each minimal entity in the interface is considered as contributing 
one assumption in each category. A structured type is considered as contributing 
one more assumption about its structure in addition to the assumptions its minimal 
elements contribute. The procedure for determining the stability of a module x and 
the stability of the program can be broken into aseries of steps [YC85]: 

Step 1: From the design, analyze the module x and all the modules that call x or 
share some file or data structure with x, and obtain the following sets. 

Jx = {modules that invoke x} 

J; = {modules invoked by x} 

Rxy = {passed parameters retumed from x to y, Y E Jx } 

R~y = {parameters passed from x to y, Y E J;} 

GRx = {Global data referenced in x} 

G Dx = {Global data defined in x} 

Note that determining G Rx and G Dx is not always possible when pointers and 
indirect referencing are used. In that case, a conservative estimate is to be used. 
From these, for each global data item i, define the set Gi as 

Gi = {xli E GRx U GDx }. 

The set Gi represents the set of modules where the global data i is either referenced 
or defined. Where it is not possible to compute G accurately, the worst case should 
be taken. 

Step 2: For each module x, determine the number of assumptions made by a caller 
module y about elements in Rxy (parameters retumed from module x to y) through 
these steps: 

1. Initialize assumption count to O. 

2. If i is a structured data element, decompose it into base types, and increment 
the assumption count by I; else consider i minimal. 

3. Decompose base types, and if they are structured, increment the count by 1. 
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4. For each minimal entity i, if module y makes some assumption about the 
value of i, increment the count by 2; else increment by 1. 

Let T Pxy represent the total number of assumptions made by a module y about 
parameters in Rxy • 

Step 3: Determine T P;y' the total number of assumptions made by a module y 

called by the module x about elements in R:y (parameters passed from module x 
to y). The method for computation is the same as in the previous step. 

Step 4: For each data element i E G Dx (i.e., the global data elements modified by 
the module x), determine the total number of assumptions made by other modules 
about i. These will be the modules other than x that use or modify i, i.e., the set 
of modules to be considered is {Gi - {x}}. The counting method of step 2 is used. 
Let T Gx be the total number of assumptions made by other modules about the 
elements in GD x' 

Step 5: Für a module x, the design logical ripple effect (DLRE) is defined as: 

DLREx = TG x + L T Pxy + L T P;y. 
YEJ.," YEJ.; 

DLREx is the total number of assumptions made by other modules that interact 
with x through either parameters or global data. The design stability (DS) of a 
module x is then defined as 

DSx = 1/(1 + DLREx ). 

Step 6: The program design stability (PDS) is computed as 

PDS = 1 / (1 + ~ DLREx) . 

By following this sequence of steps, the design stability of each module and the 
overall pro gram can be computed. The stability metric, in asense, is trying to 
capture the notion of coupling of a module with other modules. The stability metrics 
can be used to compare alternative designs-the larger the stability, the more 
maintainable the program. It can also be used to identify modules that are not 
very stable and that are highly coupled with other modules with a potential of 
high ripple effect. Changes to these modules will not be easy, hence aredesign 
can be considered to enhance the stability. Only a limited validation has been 
done for this metric. Some validation has been given in [YC85], showing that if 
good programming practices of data encapsulation, etc. are followed, which are 
generally recognized as enhancing maintainability, then higher program stability 
results. 

Another stability metric was described in [Mye79]. In this formulation, the effect 
of a change in a module i on another module j is represented as a probability. 
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For the entire system, the effect of change is captured by the probability of change 
metrics C. An element C [i, j] of the matrix represents the probability that a change 
in module i will result in a change in module j. With this matrix the ripple effect 
of a change in a module can also be easily computed. This can then be used to 
model the stability of the system. The main problem with this metric is to estimate 
the elements of the matrix. 

5.6.3 Information Flow Metries 

The network metrics of graph impurity had the basis that as the graph impurity 
increases, the coupling increases. However, it is not a very good approximation for 
coupling, as coupling of a module increases with the complexity of the interface 
and the total number of modules a module is coupled with, whether it is the caller 
or the callee. So, if we want a metric that is better at quantifying coupling between 
modules, it should handle these. The information flow metrics attempt to define 
the complexity in terms of the total information flowing through a module, in an 
effort to quantify coupling. 

The earliest work on information flow metrics was done by Henry and Kafura 
[HK81, HK84]. In their metric, the complexity of a module is considered as de
pending on the intramodule complexity and the intermodule complexity. The in
tramodule complexity is approximated by the size of the module in lines of code 
(which is actually the estimated size at design time). The intermodule complexity 
of a module depends on the total information flowing in the module (inflow) and 
the total information flowing out of the module (outjlow). The inflow of a module 
is the total number of abstract data elements flowing in the module (Le., whose 
values are used by the module), and the outflow is the total number of abstract data 
elements that are flowing out of the module (Le., whose values are defined by this 
module and used by other modules). The module design complexity, Dc. is defined 
as 

D c = size * (inflow * outflOW)2. 

The term (inflow * outflow) refers to the total number of combinations of input 
source and output destination. This term is squared, as the interconnection between 
the modules is considered a more important factor (compared to the internal com
plexity) determining the complexity of a module. This is based on the common 
experience that the modules with more interconnections are harder to test or modify 
compared to other similar-size modules with fewer interconnections. 

The metric defined earlier defines the complexity of a module purely in terms of the 
total amount of data flowing in and out of the module and the module size. A variant 
of this was proposed based on the hypothesis that the module complexity depends 
not only on the information flowing in and out, but also on the number of modules 
to or from which it is flowing. The module size is considered an insignificant factor, 
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and complexity D c for a module is defined as [ZZ93]: 

Dc = fan_in * fan_out + inflow * outflow 

where fan_in represents the number of modules that call this module and fan_out 
is the number of modules this module calls. 

The main question that arises is how good these metrics are. For "good," we will 
have to define their purpose, or how we want to use them. Just having a number 
signifying the complexity is, in itself, oflittle use, unless it can be used to make some 
judgement about cost or quality. One way to use the information about complexity 
could be to identify the complex modules, as these modules are likely to be more 
error prone and form "hot spots" later, if they are left as iso Once these modules 
are identified, the design can be evaluated to see if the complexity is inherent in 
the problem or if the design can be changed to reduce the complexity. 

To identify modules that are "extra complex," we will have to define what com
plexity number is normal. Having a threshold complexity above which a module is 
considered complex assumes the existence of a globally accepted threshold value. 
This may not be possible, as designs in different problem domains produce dif
ferent types of modules. Another alternative is to consider a module against other 
modules in the current design only, instead of comparing the modules against a 
prespecified standard. That is, evaluate the complexity of the modules in the de
sign and highlight modules that are, relatively speaking, more complex. In this 
approach, the criteria for marking a module complex is also determined from the 
current design. 

One such method for highlighting the modules was suggested in [ZZ93]. Let a vg_ 
complexity be the average complexity of the modules in the design being evalu
ated, and let std_deviation be the standard deviation in the design complexity of 
the modules of the system. The proposed method cIassifies the modules in three 
catagories: error-prone, complex, and normal. If D c is the complexity of a module, 
it can be cIassified as folIows: 

Error-prone 
Complex 

Normal 

If Dc > avg_complexity + std_deviation 
If avg_complexity < D c < avg_complexity 

+ std_deviation 
Otherwise 

Note that this definition of error-prone and complex is independent of the metric 
definition used to compute the complexity of modules. With this approach, a design 
can be evaluated by itself, not for overall design quality, but to draw attention 
to the error-prone and complex modules. This information can then be used to 
redesign the system to reduce the complexity ofthese modules (which also results in 
overall complexity reduction). This approach has been found to be very effective in 
identifying error-prone modules [ZZ93, MJ95]. In evaluations of some completed 
projects, ithas been shown that error-prone and complex modules together highlight 
the modules in ;.vhich most errors occurred [ZZ93, MJ95]. This suggests that for 
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a project, modules thus highlighted during design time point to modules that will 
be "hot spots" if the design is not improved by reducing their complexity. Another 
use of this is that even if the complexity of these modules is not reduced (perhaps 
because the complexity is intrinsic in the problem), identification of error-prone 
modules can help in quality assurance later; these modules can be required to 
undergo more rigorous quality assurance. 

In some cases it is found that there are some modules with extreme values that 
adversely affect the threshold defined through average and standard deviation. In 
such situations, some of the error-prone modules may not be highlighted. To take 
care ofthis, anx-Iess approach can be followed in which the top x modules with the 
highest complexity can be eliminated for the purpose of computation of average 
and standard deviation [ZZ93]. However, how many, if any, modules to ignore is 
a subjective judgment that must be left to the designer. In some cases, the x-Iess 
approach shows better results than the earlier approach. 

It should be pointed out that this approach cannot be repeatedly applied as the de
sign evolves. That is, once the modules have been highlighted by this approach and 
the design modified, using this approach to highlight modules again on the mod
ified design will not yield good results. There is always an average and standard 
deviation, so as the design is improved and made less complex, using average and 
standard deviation to separate modules as complex and error-prone will be mislead
ing. For example, if after the design has been modified to reduce the complexity 
of the error-prone or complex modules, the design might be such that complexity 
of most modules is similar. In this situation, this approach will highlight all those 
modules whose complexity is more than the average, even though all modules are 
elose to average complexity, which is elearly misleading. Hence, this approach 
should be used only for evaluating the first few designs of a system. 

5.7 Summary 

The design of a system is a plan for a solution such that if the plan is implemented, 
the implemented system will satisfy the requirements of the system. The goal of 
the design process is to find the best possible design. The most important criteria to 
judge a design are verijiability, reliability, and maintainability. The design activity 
is a two-Ievel process. The first level produces the system design which defines 
the components needed for the system, and how the components interact with each 
other. The detailed design refines the system design, by providing more description 
of the processing logic of components and data structures, so that the design can 
be easily implemented. A design methodology is a systematic approach to creating 
a design. Most design methodologies concentrate on system design. 

Problem partitioning is a basic principle for guiding the design process. The goal is 
to effectively handle the complexity of designing large systems by partitioning the 
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problem into separate pieces so that each piece can be solved separately. Problem 
partitioning depends on the effective use of abstraction. Abstraction of a compo
nent is a view of the component that extracts the essential information relevant to 
the particular purpose and ignores therest of the information. It allows a module 
to be specified by its extern al behavior only. Abstraction permits a designer to con
centrate on one component at a time by using the abstraction of other components 
to decide the interaction between components. 

Modularity is a means of problem partitioning in software design. A system is 
considered modular if each component has a well-defined abstraction and if change 
in one component has minimal impact on other components. Two criteria used 
for deciding the modules during design are coupling and cohesion. Coupling is 
a measure of interdependence between modules, while cohesion is a measure of 
the strength with which the different elements of a module are related. There are 
different levels of cohesion, functional and type cohesion being the highest levels 
and incidental being the lowest. In general, other properties being equal, coupling 
should be minimized and cohesion maximized. 

The structured design method is one of the best known methods for developing 
the design of a software system. This method creates a structure chart that can 
be used to implement the system. The goal is to produce a structure where the 
modules have minimum dependence on each other (low coupling) and a high level 
of cohesion. The basic methodology has four steps: (l) restate the problem as a 
data fiow graph; (2) identify the most abstract input and output data elements; (3) 
perform first-level factoring, which is done by specifying an input module for each 
of the most abstract inputs, an output module for each of the most abstract outputs, 
and a transform module for each of the central transforms; and (4) factor each of 
the input, output, and transform modules. 

The methodology does not reduce the problem of design to aseries of steps that 
can be followed blindly. The essential goal is to get a c1ear hierarchical structure. A 
number of design heuristics can be used to improve the structure resulting from the 
application of the basic methodology. The basic guiding principles are simplicity, 
high cohesion, and low coupling. 

Every phase in the waterfall model must end with verification of the output pro
duced in that phase. In the system design phase the output is the system design 
document, which contains the major data structures and the module definitions. 
The most common method for verification is design reviews, in which a team of 
persons reviews the design. If a design language is used for design specification 
and if tools are available to process designs expressed in that language, then some 
amount of consistency checking can be done automatically by these tools. 

There are a number of metrics that can be used to evaluate function-oriented de
signs. Network metrics evaluate the structure chart and consider deviation from the 
tree as the metric signifying the quality of design. The stability metric we discussed 
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tries to quantify how resistant the design is to the ripple effects caused by changes 
by explicitly counting the number of assumptions modules make about each other. 
The information ftow complexity metrics define design complexity based on the 
internal complexity of the module and the number of connections between mod
ules. We have used information ftow complexity for the evaluation of the design 
of the case study, using a tool for metrics extraction. The tool is available to the 
readers from the horne page of the book. 

1. Consider a pro gram containing many modules. If a global variable x must be 
used to share data between two modules A and B, how would you design the 
modules to minimize coupling? 

2. List a set of poor programming practices, based on the criteria of coupling 
and cohesion. 

3. What is the cohesion of the following module? How would you change 
the module to increase cohesion? 

procedure file (file_ptr, fileJ1ame, 0pJ1ame); 
begin 

case 0pJ1ame of 
"open": perform activities for opening the file. 
"elose": perform activities for opening the file. 
"print": print the file 

end case 
end 

4. If some existing modules are to be re-used in building a new system, will you 
use a top-down or bottom-up approach? Why? 

5. If a module has logical cohesion, what kind of coupling is this module likely 
to have with others? 

6. What is the difference between a ftow chart and a structure chart? 

7. Draw the structure chart for the following program: 
mainO; 
{ int x, y; 

aO 

x = 0; y = 0; 
aO; bO; } 

{ x = x+y; y y+5;} 
bO 
{ x = x+5; Y y+x; a(); } 

How ~ould you modify this pro gram to improve the modularity? 
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8. If a '+' or a '*' is present between two output strearns from a transform in 
a data flow graph, state same specific property about the module for that 
transform. 

9. U se the structured design methodology to produce a design for the following: 

(a) A system to convert ASCII to EBSDIC. 

(b) A system to analyze YOUf diet when given your daily intake (and some 
data files about different types of food and recommended intakes). 

(c) A system to do student registration in the manner it is done at YOUf college. 

(d) A system to manage the inventory at a hardware store. 

(e) A system for a drug store that will manage inventory, keep track of expira
tion dates, and track allergy records of patients to avoid issuing medicines 
that might be harmful. 

(f) A system that acts as a calculator with only basic arithmetic functions. 

10. Is this statement true: "If we follow the structured design methodology (with
out applying any heuristics), the resulting structure will always have one 
transform module for each bubble in the data ftow graph"? Explain your 
answer. 

11. Given a structure with high fan-out, how would you convert it to a structure 
with a low fan-out? 

12. What are the major metrics that can be used to evaluate system design? Which 
of these can be used to better approximate the size of the final system, and 
how? 

13. What are the major methods for verifying a design? If the design is expressed 
in a formallanguage, can an automated tool help in verification, and in what 
manner? 

14. Design an experiment to study whether the information flow metries and 
stability metrics are correlated. 

15. If you have all the metrics data available for design, how will you use this 
data? Specify YOUf objectives, the metrics you will use, how you will interpret 
the value, and what possible actions you will take based on the interpretation. 
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CASE STUDY 

Structured Design 

Data Flow Diagram: This is the first step in the structured design method. In our 
case study, there are two inputs: filel and file2. Three outputs are required: the time 
table, the conftict table, and the explanations for the schedule. A high-level data 
ftow diagram of this problem is given in Figure 5.12. 

The diagram is fairly dear. First we get from file 1 the information about dassrooms, 
lecture times, and courses, and we validate their format. The validated input from 
filel is used for cross-validating information in file2. After validating the file2 
input, we get an array of valid course records (with preferences, etc.) that must 
be scheduled. Because PG courses have to be scheduled before UG courses, these 
course records are separated into different groups: PG courses with preferences, 
UG courses with preferences, PG courses with no preference, and UG courses with 
no preference. This separated course list is the input to the schedule transform, the 
output of which is the three desired outputs. 

The most abstract input and most abstract output are fairly obvious here. The 
"separated course schedule" is the most abstract input and the three outputs of 
the schedule transform are the most abstract outputs. There is only one central 
transform: schedule. 

First-Level Factoring: The first-level structure chart can easily be obtained and is 
shown in Figure 5.13. In the structure chart, instead of having one output module 
for each of the three outputs, as is shown in the data ftow diagram, we have only one 
output module, which then invokes three output modules for the different outputs. 

Factoring the Input and Output Modules: The output module does not need any 
factoring. According to the design methodology, the input module geLvalidated_ 
input will have one input module to get the array of validated course records and 
one transform module to separate into course groups. This input module can then 
be further factored into three input modules to get different validated inputs from 
file 1, one input module to get data from file2, and one module for validating the 
file2 data. Because the data from filel is also needed for the central transform, we 
modify the structure of the input branch. The structure chart for the input branch 
is shown in Figure 5.14. 

Factoring the Central Transform: Now the central transform has to be factored. 
According to the requirements, PG courses have to be given preference over UG 
courses, and the highest priority of each course must be satisfied. This means that 
the courses with no priority should be scheduled after the courses with priority. 
Hence, we have four major subordinate modules to the central transform: schedule 
PG courses with preferences, schedule UG courses with preferences, schedule PG 
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b,c,~ 

FIGURE 5.13. First level factoring. 

b,c,~ 

b,c,~ 
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~f 

103 
Separate 
Courses 

FlGURE 5.14. Factoring of the input branch. 

courses with no preferences, and schedule UG courses with no preferences. The 
structure ofthe central transforrn is shown in Figure 5.15. 

These canthen be combined into a structure chart for the system. The overall 
structure chart is shown in Figure 5.16. This structure chart gives an overall view 
of the strategy for structuring the programs. Further details about each module will 
evolve during detailed design and coding. 
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e,~ f4,h 

6-'" ~ 
f1,g1,h e,h 

201 202 203 204 

Schedule Schedule Schedule Schedule 

PG Prefs UG Prefs PG No Prefs UG No Prefs 

FIGURE 5.15. Factoring the central transfonll. 

Design Analysis 

Requirements Tracing 

Here we list each major requirement and then list the modules in the structure chart 
that implement that requirement. The tracing shows that each requirement has been 
handled in the design: 

1. No more than one course should be scheduled at the same time in the same 
room: sched_pg_preLsched_ug_preLsched_pg-llo_preLsched_ug-llo_pref 

2. The dass capacity should be more than the expected enrollment of the course: 
sched_pg_preLsched_ug_preLsched_pg_no_preL sched_ug-llo_pref 

3. Preference is given to PG courses over UG courses for scheduling: sched_pg_ 
preL sched_ug_preL sched_pg-llo_preLsched_ug-llo_pref 

4. The courses should be scheduled so that the highest possible priority of an 
instructor is given: sched_pg_pref, sched_ug_pref, sched_pg-llo_pref, sched_ 
ug-llo_pref 
If no priority is specified, any room and time can be assigned: sched_pg-llo_ 
preL sched_ug~o_pref 

5. If any priority is incorrect, it is to be discarded: geLpre_valid 

6. No two PG courses should be scheduled at the same time: sched_pg_pref, 
sched_pg-llo_pref 

7. If no preference is specified for a course, the course should be scheduled in 
any manner that does not violate the preceding constraints: sched_pg-llo_pref, 
sched_ug-llo_pref 

8. The validity of the data in inpuLfilel should be checked where possible: 
validate_file I and its subordinates. 

9. The data in input file2 should be checked for validity against the data provided 
in input filel: validate_file2 
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Analysis Using Information Flow Metries 

Based on the structure chart, the design of the system was first specified com
pletely: this required formally specifying the data structures and all the modules. 
For each module, we specified the purpose of the module, its interface, the modules 
it invokes, and the estimated size of the module (in LOC). This formed the first 
version of the design document. 

The first thing that could be noted was that when specifying a complete design 
from the structure chart, the design usually expands. For example, we found that for 
supporting the module for scheduling the UG courses with preferences (SchedUg
Prefs) a lot more needs to be done. The reason is as follows. The UG courses with 
preferences are scheduled before PG courses with no preferences. However, PG 
courses are to be given preferences and no two PG courses can be scheduled in the 
same time slot. Hence, a UG course should not be allotted a slot that makes a PG 
course "unschedulable." This requires that "safety" of a room and time for a UG 
course should be checked before allocation. 

For this, another data struCture was specified. Essentially, a three-dimensional 
linked list was defined, which contained for each PG course the list of time slots for 
which it could be allotted, and for each time slot a list of all rooms where it could 
be allotted was maintained. This structure can be used for checking the safety-an 
allocation should not make a PG course unschedulable. In addition to this, a lot 
of utility routines needed to be defined to support the other functions, e.g., sort_ 
rooms(), geLindex(), and chk_fmLcourse_no(). 

The complete first version of the design is not given here, but it can be obtained 
from the horne page of the book (the addresss is given in the Preface). Here, we 
specify just the portions that are different from the final version of the design, which 
is given later. The basic difference was in how UG courses with preferences were 
scheduled. The data struCtures and the relevant modules for this portion are given 
here. If the reader wants, the final design document, given later in this chapter, can 
be used to understand the first version by "replacing" appropriate portions related 
to checking of safety by the portions given here. 

The specification language is simple and dear from the design fragment given here 
and the complete design given later. It is essentially oriented toward C and is such 
that the design can easily be converted to module headers for C programs with 
some simple editing. 

/****************************************************************************/ 
/* Following are for reserving slots for PgNoPrefs courses. A 3-D linked list 
* is maintained. For each PgNoPref course (in the list of all courses), list 
* of time slots is kept. For each time slot, list of possible rooms is kept. 
* Using this structure, before allotting a UgPref course, it can be checked 
* if by allotting it we are making a PgNoPref course unallottable. If that 
* is the case, that allotment for the UG course is not done */ 



www.manaraa.com

Gase Study 259 

typedef struct R_Node 1* list of indices into class room_db; contains rooms 
with capacity greater than enrol of PgNoPref course *1 

{ 

int r_index; 
struct R_Node *next; 

h_node; 

typedef struct T_Slot_Node 1* list of possible time slots for pg_no_prefs *1 
{ 

int time_slot; 
r_node *roomlist; 
struct T_Slot_Node *next; 

h_slot_node; 

typedef struct pg_Res_Node 
{ 

int pgcourse; 
t_slot_node *time_slots; 
struct Pg_Res_Node *next; 

}pg_res_node; 

1*---------------------------------------------*1 

1* Schedule UG courses with preferences. This is not straightforward. Before 
* alloting a <timeslot, classroom>, it has to check if this allotment is "safe," 
* i.e., the schedulability of PG courses with no prefs is not disturbed. 
* Does so by "simulating" scheduling of pg_no_pref courses - an allotment 
* is safe if the same no. can be still be scheduled after this allotment *1 

sched_ug_pref(IN:SchCourses,PgAlloc, OUT:ConflLst,ExplnLst, IN_OUT:TimeTable) 
course *SchCourses; 
int *PgAlloc; 
error *ConflLst; 
error *ExplnLst; 
int **TimeTable; 
{ 

} 

SUBORDINATES :get_room(),is_safe_allotment(), 
initialize_pg_reserve(), update_pg_reserve(); 

SIZE:100 

1* Initializes the 3-D linked data structure - pg_reserve *1 
initialize_pg_reserve(IN:PgAlloc, SchCourses, OUT:pg_reserve) 
int PgAlloc [] ; 



www.manaraa.com

260 5. Function-Oriented Design 

course SchCourses[]; 
pg_res_node pg_reserve; 
{ 

} 

SUBORDINATES :get_room(); 
SIZE:50 

/* Updates the PG reserve after a UG course with preference is allotted */ 
update_pg_reserve (IN:time,roomno, IN_OUT:pg_reserve) 
int time,roomno; 
pg_res_node pg_reserve; 
{ 

} 

SUBORDINATES 
SIZE:50 

/* Checks if an allotment for a UG course with preference is safe, i.e. 
* the schedulability of PG courses with no preferences is not affected */ 

int is_safe_allotment(IN:time_slot,roomno,pg_reserve) 
int time_slot,roomno; 
pg_res_node pg_reserve; 
{ 

} 

SUBORDINATES 
SIZE: 80 

/****************************************************************************/ 

OVERALL METRICS 

The complete first version design was then analyzed using information ftow metrics 
described earlier in the chapter. We followed the approach of comparing modules 
of the design among themselves and then highlight the "error-prone" and "com
plex modules" (as described earlier). In the case study we used the metric where 
complexity ofa module is defined as Dc = fan_in* fan_out +inflow *outflow. 
The definition of error-prone and complex is as given earlier, except that we also 
use size for c1assification; the size of the module must also be above average or 
above (average + standard deviation) for it to be c1assified as complex or error 
prone. A locally developed tool called dmetric was used to extract the information 
ftow metrics. (The tool is available to the readers from the home page.) The overall 
metrics for the design and the metrics for the modules highlighted by the tool are 
given here. 

#modules: 35 Total size: 1330 Avg. size: 38 Std.Deviation: 27 
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Total complexity: 595 Avg. complexity: 17 Std.Deviation: 33 

Deviation of the structure chart from a tree = 0 
(without considering leaves) 

ERROR-PRONE MODULES 

8) sched_ug_pref 
call_in: 1 call_out: 4 inflow: 5 outflow:13 size:100 
design complexity: 69 

COMPLEX MODULES 

5) validate_file2 
call_in: 1 call_out: 4 inflow: 4 outflow: 8 size:100 
design complexity: 36 

7) sched_pg_pref 
call_in: 1 call_out: 1 inflow: 1 outflow: 6 size:75 
design complexity: 7 

13) is_safe_allotment 
call_in: 1 call_out: 0 inflow: 3 outflow: 1 size:80 
design complexity: 3 

15) validate_classrooms 
calLin: 1 call_out: 5 inflow: 3 outflow: 7 size:80 
design complexity: 26 

16) validate_dept_courses 
call_in: 1 call_out: 3 inflow: 2 outflow: 5 size:75 
design complexity: 13 

17) validate_lec_times 
call_in: 1 call_out: 3 inflow: 2 outflow: 5 size:70 
design complexity: 13 

---------------------------------------------------------------------
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This data flow analysis clearly points out that the module to schedule UG courses 
with preferences is the most complex, with a complexity considerably higher than 
the average. It also shows that the overall structure is a tree (with a 0 deviation). 
Hence, we considered the structure to be all right. Based on this analysis, parts of 
the design dealing with scheduling of UG courses was re-examined in an effort to 
reduce complexity. 
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During analysis we observed that much of the complexity was due to the 3-D 
linked data structure being used for determining safety. Through discussions, we 
then developed a different approach for determining safety. The idea was that 
instead of using aseparate data structure, before allocating a UG course, we will 
"simulate" the scheduling of the PgNoPref courses, using the regular function 
for scheduling these courses. If the number of courses the function sched_pg_no_ 
prefsO returns is the same before and after the planned UG course scheduling, then 
the current allocation is safe. For this approach, we just have to make sure that is_ 
safe_allotmentO invokes sched_pg-Ilo_prefsO with temporary data structures such 
that the actual timetable is not affected during this "simulation." The design was 
then modified to incorporate this approach. On analyzing the complexity again, 
we found that this approach reduced the complexity of the sched_ug_prefO module 
significantly and the complexity of this module was now similar to complexity of 
other modules. Overall, we considered the modified design satisfactory. The final 
design is given soon; it can also be obtained from the horne page. 

This demonstrates how highlighting of"hot spots" can be used to focus the attention 
of the designer or analysts and to improve the quality of the design. Note that this 
is done before the coding has started, which makes it very efficient from the point 
of view of cost. For example, if the same decision of changing the method of 
determining safety was taken after the code was developed, it would require that 
some parts of the old code be discarded, new code developed, and the design 
document changed to refiect the new design. All this will require considerably 
more effort than what was spent to change the design. Metrics-based analysis can 
also be used for monitoring by the project management; a quick look at the results 
of complexity and structure analysis will reveal if the structure and complexity are 
"acceptable" or if the design needs improvement. 

Design Specification 
1* Revised version. Last modification 24 Feb 1995 *1 

1* This software is for scheduling a set of courses offered by the Computer 
* Science Department - requirements of which are given in the SRS. 
* The design was done using structured design methodology, and the structure 
* chart is given elsewhere. This design document specifies the design formally. 
* It contains all descriptions of the major data structures and the modules 
* that are needed to implement a solution. This design was analyzed using 
* the dmetric tool for analyzing information flow complexity and was 
* found to be acceptable *1 

1*******************************************************************1 
1* DATA DEFINITIONS *1 
1*******************************************************************1 
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typedef char courseno[MAX_CDURSEND_SIZE]; 
typedef char timeslot[MAX_TIMESLDT_SIZE]; 

typedef struct { 
int room_no; 
int capacity; 

} room; 

typedef struct LstNode { 1* A general linked list of integers *1 
int index; 1* typically index in some DB will be kept *1 
struct LstNode *next; 

} lstnode; 

typedef struct { 
int cnum; 

1* information about a course to be scheduled *1 
1* index in CourseDB of this course *1 
1* expected enrollment *1 
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int enrol; 
lstnode *prefs; 1* list of prefs, kept as index in timeslotDB *1 

} course; 

typedef struct { 
int err_code; 
int cnum; 
int roomno; 
lstnode *prefs; 

} error; 

1* to produce conflict or explanation info *1 

1* course no. for which error found *1 
1* room no. may be needed in some error message *1 
1* 1st of prefs (time slots) *1 

1*---------------------------------------------*1 

FILE *filel,*file2; 1* input files *1 

courseno CourseDB[MAX_CDURSES]; 
room ClassroomDB[MAX_RDDMS]; 1* 
timeslot TimeslotDB[MAX_TIMES]; 
course SchCourses[MAX_CDURSES]; 

1* List of valid courses *1 
List of valid classrooms *1 

1* List of valid time slots *1 
1* List of courses to be scheduled *1 

int TimeTable[MAX_RDDMS] [MAX_TIMES]; 1* rows are indices in ClassroomDB; 
columns in TimeslotDB *1 

int PgAlloc[MAX_TIMES]; 1* Time slots occupied by PG courses. An entry is -ve 
if not allocated to a PG course, +ve otherwise. Used 

for checking conflicts while schduling PG courses*1 

error ExplnLst[MAX_CDURSES]; 1* expln for each unschedulable pref *1 
error ConflLst[MAX_CDURSES]; 1* expln for unschedulable courses *1 
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1*******************************************************************1 
1* MODULE SPECIFICATIONS *1 
1*******************************************************************1 

main(IN:file1,file2) 
char *file1, *file2; 
{ 

SUBORDINATES : get_validated_input(),schedule(),print_output(); 
SIZE: 10 

} 

1*******************************************************************1 

1* This module validates the contents of file1 and file2 and produces 
* lists for valid courses, classrooms, time slots, and courses to be 
* scheduled. If errors are found in the input file format, it exits if 
* scheduling is not possible, else ignores the erroneous data *1 

get_validated_input(IN:fd1,fd2, OUT:TimeslotDB,ClassroomDB,CourseDB,SchCourses) 
FILE *fd1,*fd2; 
timeslot *TimeslotDB; 
room *ClassroomDB; 
courseno *CourseDB; 
course *SchCourses; 
{ 

SUBORDINATES :validate_file1(),validate_file2(),separate_courses(); 
SIZE: 20 

} 

1*---------------------------------------------*1 

1* Top-level module to schedule courses. Besides timetable, it 
* gives explanation for courses/prefs that could not be satisfied *1 

schedule (IN: ClassroomDB ,TimeslotDB , CourseDB,SchCourses , 
OUT:TimeTable,ConfILst,ExplnLst) 

room *ClassroomDB; 
timeslot *TimeslotDB; 
courseno *CourseDB; 
course *SchCourses; 
int **TimeTable; 
error *ConfILst; 
error *ExplnLst; 
{ 

SUBORDINATES sched_pg_pref(), sched_ug_pref(), 
sched_ug_no_pref(), sched_pg_no_pref(); 
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SIZE:10 
} 

/*---------------------------------------------*/ 

/* Top-level Print module to produce all outputs */ 

print_output(IN:TimeTable,ExplnLst,ConflLst) 
int **TimeTable; 
error *ConflLst; 
error *ExplnLst; 
{ 
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SUBORDINATES :print_TimeTable(), print_explanation(), print_conflict(); 
SIZE:10 

} 

/*******************************************************************/ 

validate_file1(IN:fd,OUT:ClassroomDB,CourseDB,TimeslotDB) 
FILE *fd; 
room *ClassroomDB; 
char *CourseDB; 
char *TimeslotDB; 
{ 

} 

SUBORDINATES :validate_classrooms(), validate_dept_courses(), 
validate_lec_times(); 

SIZE: 10 

/*---------------------------------------------*/ 

validate_file2(IN:fd, OUT:SchCourses) 
FILE *fd; 
course *SchCourses; 
{ 

} 

SUBORDINATES :get_course_index(),chk_dup_sched_course(), 
get_next_line(),form_pref_list(); 

SIZE: 100 

/*---------------------------------------------*/ 

/* Rearrange courses in this order: PG courses with preferences, UG courses 
* with prefs, PG courses with no prefs, UG courses with no prefs */ 

separate_courses (IN: CourseDB,IN_OUT: SchCourses) 
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char *CourseDB; 
course *SchCourses; 
{ 

} 

SUBORDINATES 
SIZE:60 

/*---------------------------------------------*/ 

/* Schedules PG courses with prefs - allots highest possible preference 
* (re cords in PgAlloc also). For prefs it cannot satisfy, makes entry in ExplnLst. 
* If cannot schedule a course, makes entry in ConflLst */ 

sched_pg_pref(IN:SchCourses,OUT:TimeTable,ExplnLst,ConfILst,PgAlloc) 
course *SchCourses; 
int **TimeTable; 
error *ExplnLst; 
error *ConfILst; 
int *PgAlloc; 
{ 

} 

SUBORDINATES :get_room(); 
SIZE:75 

/*---------------------------------------------*/ 

/* Schedule UG courses with preferences. This is not straightforward. 
* Before alloting a <timeslot, classroom>, it has to check if this allotment 
* is "safe," Le., the schedulability of PG courses with no prefs is not disturbed. 
* It does so by first "simulating" a scheduling of pg_no_pref courses - an allotment 
* is safe if the same no. can be still be scheduled after this allocation */ 

sched_ug_pref(IN:SchCourses,PgAlloc, OUT: ConflLst ,ExplnLst , IN_OUT:TimeTable) 
course *SchCourses; 
int *PgAlloc; 
error *ConfILst; 
error *ExplnLst; 
int **TimeTable; 
{ 

SUBORDINATES :get_room(),PgNoPrefSchlable(),is_safe_allotment(); 

SIZE: 100 
} 

/*-------------------------~-------------------*/ 

/* Schedule PG courses with no prefs. Returns the number of courses scheduled */ 
int sched_pg_no_pref (IN: SChCoUJses,PgAlloc, OUT:ConfILst,TimeTable) 
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course *SchCourses; 
error *ConflLst; 
int *PgAlloc; 
int **TimeTable; 
{ 

} 

SUBORDINATES :get_room(); 
SIZE:50 

1*---------------------------------------------*1 

sched_ug_no_pref (IN: SchCourses , OUT: ConflLst , IN_oUT:TimeTable) 
course *SchCourses; 
int **TimeTable; 
error *ConflLst; 
{ 

} 

SUBORDINATES :get_room(); 
SIZE:40 
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1**********************************************************************1 

1* Checks if an allotment for a UG course with preference is safe, i.e. 
* the schedulability of PG courses with no preferences is not affected *1 

int is_safe_allotment(IN:time_slot,roomno,SchedPgNoPrefs,TimeTable,PgAlloc,SchCourses) 
int time_slot,roomno; 
int SchedPgNoPrefs; 1* initially schedulable pg_no_pref courses *1 
int **TimeTable; 
int *PgAlloc; 
course *SchCourses; 
{ 

} 

SUBORDINATES : PgNoPrefSchlable(); 
SIZE:50 

1*---------------------------------------------*1 

1* Returns the number of schedulable pg_no_pref courses without modifying 
* the timetable and PgAlloc *1 

int PgNoPrefSchlable(IN:TimeTable,PgAlloc,SchCourse) 
int TimeTable[] [MAX_TIMES]; 
int *PgAlloc; 
course *SchCourse; 
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{ 

} 

SUBORDINATES 
SIZE : 15 

1**********************************************************************1 

1* Get validated classroom info and build ClassroomDB. If any error, continue 
* parsing, ignoring that room no. Room records sorted in increasing capacity *1 

validate_classrooms (IN:fd,OUT: ClassroomDB) 
FILE *fd; 
room *ClassroomDB; 
{ 

} 

SUBORDINATES :get_next_line(),chk_fmt_room_no(), 
chk_range_cap(),chk_dup_room(),sort_rooms(); 

SIZE:80 

1*---------------------------------------------*1 

1* Get validated list of courses from File 1*1 
validate_dept_courses(IN:fd,OUT:CourseDB) 
FILE *fd; 
char *CourseDB; 
{ 

} 

SUBORDINATES : get_next_line () ,chk_dup_course() ,chk_fmt_course_no(); 
SIZE:75 

1*---------------------------------------------*1 

1* Get validated time slots from File 1*1 
validate_lec_times(IN:fd,OUT:TimeslotDB) 
FILE *fd; 
timeslot *TimeslotDB; 
{ 

} 

SUBORDINATES : get_next_line(),chk_fmt_time_slot(), 
chk_dup_slot 0 ; 

SIZE:70 

1*---------------------------------------------*1 

1* Forms a list of validated preferences in the given order *1 
form_pref_list(IN:line,TimeslotDB,OUT:pref_list) 
char *line; 
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timeslot *TimeslotDB; 
lstnode *pref_list; 
{ 

} 

SUBORDINATES 
SIZE: 45 

/*******************************************************************/ 

print_TimeTableCIN:TimeslotDB,ClassroomDB,CourseDB,TimeTable) 
timeslot *TimeslotDB; 
room *ClassroomDB; 
courseno *CourseDB; 
int **TimeTable; 
{ 

} 

SUBORDINATES 
SIZE:40 

1*---------------------------------------------*/ 

Case Study 269 

1* Print the reasons why higher prefs for a course could not be honored */ 
print_explanationCIN:ExplnLst,CourseDB,TimeslotDB,TimeTable,ClassroomDB) 
error *ExplnLst; 
courseno *CourseDB; 
timeslot *TimeslotDB; 
room *ClassroomDB; 
{ 

} 

SUBORDINATES 
SIZE:50 

/*---------------------------------------------*1 

1* Print the list of courses that are not scheduled in the final table 
* and specify the conflicts that prevented their scheduling */ 

print_conflictCIN:ConflLst,CourseDB) 
error *ConflLst; 
courseno *CourseDB; 
{ 

} 

SUBORDINATES 
SIZE:50 
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1********************************************************************** 
* Utility Routines * 
**********************************************************************/ 

1* Check if capacity of a room is in the range [10 ... 300] */ 
int chk_range_capCIN:cap) 
int cap; 
{ SUBORDINATES : SIZE:10 } 

1* Sort the room records in increasing order of capacity *1 
sort_roomsCIN_OUT:ClassroomDB) 
r,oom CIassroomDB; 
{ SUBORDINATES : SIZE:20 } 

1* Checks if the room_no given already exists in the CIassroomDB *1 
int chk_dup_roomCIN:ClassroomDB,room_no) 
room *CIassroomDB; 
char *room_no; 
{ SUBORDINATES : SIZE:20 } 

1* Check whether this course_no already exists in the CourseDB *1 
int chk_dup_courseCIN:CourseDB,course_no) 
courseno *CourseDB; 
char *course_no; 
{ SUBORDINATES : SIZE:20 } 

1* check whether this time slot is a duplicate *1 
int chk_dup_sIotCIN:TimeslotDB,time_slot) 
timeslot *TimesIotDB; 
char *time_sIot; 
{ SUBORDINATES : SIZE:20 } 

1* Returns the index of the course number in CourseDB */ 
get_course_indexCIN:course_no,CourseDB, OUT:course_index) 
int course_index; 
char *course_no; 
courseno *CourseDB; 
{ SUBORDINATES : SIZE:15 } 

1* checks if a course number is a duplicate *1 
int dupIicate_courseCIN:CourseDB,cnum) 
courseno *CourseDB; 
char *cnum; 
{ SUBORDINATES : SIZE:20 } 

1* returns the index of the smaIIest room that can accommodate the course */ 
int get_roomCIN:ClassroomDB,en~ol) 
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room *ClassroomDB; 
int enrol; 
{ SUBORDINATES : SIZE:15 } 

1* returns first nonempty line from the input file *1 
get_next_IineCIN:fd,DUT:line) 
FILE *fd; 
char *line; 
{ SUBORDINATES : SIZE : 25 } 

1* checks the format of the room number *1 
int chk_fmt_room_noCIN:room_no) 
char *room_no; 
{ SUBORDINATES : SIZE: 25 } 

1* checks the format of the given course number *1 
int chk_fmt_course_noCIN:course_no) 
char *course_no; 
{ SUBORDINATES : SIZE : 25 } 

1* checks the format of the given time slot *1 
int chk_fmt_time_slotCIN:time_slot) 
char *time_slot; 
{ SUBORDINATES : SIZE : 25 } 

1* checks whether given SchCourses_index is a duplicate occurrence *1 
int chk_dup_sched_courseCIN:SchCourses,SchCourses_index) 
course SchCourses; 
int SchCourses_index; 
{ SUBORDINATES : SIZE 25} 

C~eS~dy V1 
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6 __________________________________ _ 

Object-Oriented Design 

In Chapter 5, we mentioned that one of the general principles for designing is ab
straction, and that abstraction in software generally takes two forms-functional 
abstraction and data abstraction. The structured design methodology that we dis
cussed uses functional abstraction. It is essentially a top-down functional refine
ment technique that identifies the hierarchy of modules, with each module sup
porting some functional abstraction so that the hierarchy implements the overall 
functional specifications of the system. The system components that the SDM 
identifies are modules supporting functional abstraction. 

In this chapter we discuss a different approach for system design based on data 
abstraction. In this approach, called object-oriented (00) design, the basic system 
component is a module that supports data abstraction. The goal of design is to 
identify the objects that the system contains and the relationships and interactions 
between the objects so that the system implements the specifications. 

Object-oriented approaches are getting a lot of attention these days. Many claims 
have been made in support of object-oriented approaches. One main claimed ad
vantage of using object orientation is that an 00 model closely represents the 
problem domain, which makes it easier to produce and understand designs. In ad
dition, as requirements change, the objects in a system are less immune to these 
changes, thereby permitting changes more easily. Due to inheritance and close as
sociation of objects in design to problem domain entities, it is also believed that 
00 designs will encourage more re-use, Le., new applications can use existing 
modules more effectively, thereby reducing development cost and cycle time. Re
use is considered one of the major advantages of object orientation as one of the 
by-products of using this paradigm properly is that it allows the building of object 
libraries that can be used later by other software developers. For this advanced 
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topic of re-use in object-oriented software, the reader is referred to [G+94] which 
discusses bow patterns can be used to enhance re-use. Finally, the object-oriented 
approach is believed to be more natural, which provides nice structures for thinking 
and abstracting and leads to modular designs. It should, however, be pointed out 
there is currently little empirical evidence to support (or contradict) these claims. 
Regardless of lack of empirical evidence, these claims are believed by many and 
use of object-oriented approaches is growing very rapidly. 

The object-oriented design approach is fundamentally different from the function
oriented design approaches primarily due to the different abstraction that is used. It 
requires a different way of thinking and partitioning. It can be said that thinking in 
object-oriented terms is most important for producing truly object -oriented designs. 

In this chapter, we will discuss some important concepts that form the basis of 
object-oriented design (OOD). Then we'll define the notation that can be used while 
doing an object-oriented design and a method of specifying the design produced. 
Then we describe one OOD methodology. Though methodologies are useful, the 
most important issue while doing any activity that needs creativity is to understand 
the final objective (i.e., what needs to be done), the guiding principles for perform
ing the activity, and methods for evaluating the output. Therefore, though many 
OOD methodologies have been proposed that differ somewhat from each other, 
we will discuss only one. Then we'll discuss some metrics that are applicable on 
OOD and that can be used to evaluate the quality of design. We do not discuss 
verification methods, as the design verification methods discussed in the previous 
chapter are general methods that can be used regardless of the approach used for 
producing the design. FinaIly, as with other chapters, we'Il end by doing the 00 
design of the case study and giving the complete specification of the OOD for 
the case study. Before we discuss 00 design, let us understand the relationship 
between 00 analysis and 00 design. 

6.1 00 Analysis and 00 Design 

Pure object-oriented development requires that object-oriented techniques be used 
during the analysis, design, and implementation of the system. However, much of 
the focus of the object-oriented approach to software development has been on 
OOA and OOD. Various methods have been proposed for OOA and OOD, many 
of which propose a combined analysis and design technique. We will refer to a 
combined method as OOAD. For properties of the various techniques that have 
been proposed, the reader is referred to [MP92]. When object orientation is used 
in analysis as weIl as design, the boundary between OOA and OOD is blurred. 
This is particularly true in methods that combine analysis and design. One reason 
for this blurring is the similarity of basic constructs (i.e., objects and classes) that 
are used in OOA and OOD. Though there is no agreement about what parts of the 
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FIGURE 6.1. Relationship between OOA and OOD. 

object-oriented development process belong to analysis and what parts to design, 
there is some general agreement about the domains of the two activities. 

The fundamental difference between OOA and OOD is that the former models the 
problem domain, leading to an understanding and specification of the problem, 
while the latter models the solution to the problem. That is, analysis deals with the 
problem domain, while design deals with the solution domain. However, in OOAD 
it is believed that the problem domain representation created by OOA is generally 
subsumed in the solution domain representation. That is, the solution domain rep
resentation, created by OOD, generally contains much ofthe representation created 
by OOA, and more. This is shown in Figure 6.1 [MP92]. 

As the objective of both OOA and OOD is to model some domain, frequently the 
OOA and OOD processes (i.e., the methodologies) and the representations look 
quite similar. This contributes to the blurring of the boundaries between analysis and 
design. It is often not c1ear where analysis ends and design begins. The separating 
line is a matter of perception, and different people have different views on it. The 
lack of c1ear separation between analysis and design can also be considered one of 
the strong points of the object-oriented approach-the transition from analysis to 
design is "seamless." This is also the main reason OOAD methods-where analysis 
and design are both performed-have been proposed. 

Despite the difference in perceptions on the boundary between OOA and OOD, one 
thing is c1ear. The main difference between OOA and OOD, due to the different do
mains of modeling, is in the type of objects that come out of the analysis and design 
processes. The objects during OOA focus on the problem domain and generally 
represent some things or concepts in the problem. These objects are sometimes 
called semantic objects as they have a meaning in the problem domain [MP92]. 
The solutiondomain, on the other hand, consists of semantic objects as weIl as 
other objects. During design, as the focus is on finding and defining a solution, 
the semantic objects identified during OOA may be refined and extended from the 
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point of view of implementation, and other objects are added that are specific to the 
solution domain. The solution domain objects inc1ude interface, application, and 
utility objects [MP92]. The interface objects deal with the user interface, which is 
not directly apart of the problem domain but represents some aspect of the solution 
desired by the user. The application objects specify the control mechanisms for the 
proposed solution. They are driver objects that are specific to the application needs. 
Utility objects are those needed to support the services of the semantic objects or 
to implement them efficiently (e.g., queues, trees, and tables). These objects are 
frequently general-purpose objects and are not application-dependent. 

The basic goal of the analysis and design activities is to produce the object design 
for the system, frequently represented by object diagrams. However, the system 
has to support some functionality and behavior. Hence, in addition to concentrating 
on the static structure of the problem or solution domains, the dynamic behavior of 
the system has to be studied to make sure that the final design supports the desired 
dynamic behaviors. Due to this, some dynamic modeling of the system is desired 
before the design is complete. Whether this type of modeling is part of analysis 
or design, i.e., where in the overall OOAD process the boundary between analysis 
and design is, is not generally agreed on. 

We take the view that analysis should focus mostly on the structure of the system, 
while the impact of the dynamics of the system on the structure should be studied 
during the design. So, design should deal with both the static structure and dynamic 
behavior. It is this view that is reflected in the design methodology we discuss later 
in the chapter. 

For a design to fully represent the solution to the problem, the functional require
ments (Le., what functional capabilities the system must have) must also be taken 
into account. The object model is not a suitable vehic1e to model the functional 
aspects of the system. Integration of different views or models of a system into 
a coherent object-oriented design is a problem that has not yet been satisfacto
rily resolved. An early approach was proposed in [JaI89a] to integrate object and 
functional views of a solution. In this chapter, we will discuss the object model
ing technique (OMT), which tries to integrate the object, functional, and dynamic 
models of a system [R+91]. 

6.2 Concepts 

Here we discuss the main concepts behind object-oriented design. Though all these 
concepts were also used during object-oriented analysis, they are discussed in more 
concrete terms here, as a design deals with the solution domain and is therefore 
c10ser to the final implementation, whereas analysis deals with the problem domain 
and does not have to be concemed with implementation issues. In design, a model is 
built for the (eventual) implementation. As a consequence, implementation issues 
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drive the modeling process during design, while in analysis, comprehension and 
representation issues drive the process. This also results in OOA sometimes using 
primitives that are somewhat richer than the ones used in OOD, as the OOD prim
itives tend to be closely associated with the features of the programming language 
to be used for implementing the design. The models built during object-oriented 
analysis form the starting point of object-oriented design, and the model built by 
OOD forms the basis for object-oriented implementation. 

The ultimate goal of object-oriented design, like function-oriented design, is to 
design modular systems so that each module is easy to comprehend and change 
separately. However, unlike the function-oriented approaches that use functional 
abstraction to support modularity, in object-oriented design, data abstraction is 
used. And this fundamental difference shows up in various ways in the architecture 
of the system. 

6.2.1 Classes and Objects 

Classes and objects are the basic building blocks of an OOD, just like functions 
(and procedures) are for a function-oriented design. During design, we are not 
dealing just with abstractions of real-world objects (as is the case with analysis), 
but we are also dealing with abstract software objects. During analysis, we viewed 
an object as an entity in the problem domain that had clearly defined boundaries 
and behavior. During design, this has to be extended to accommodate software 
objects. 

Encapsulation 

In general, we consider objects entities that provide some services to be used by 
a client, which could be another object, pro gram, or auser. The basic property of 
an object is encapsulation: it encapsulates the data and information it contains and 
supports a well-defined abstraction. For this, an object provides some well-defined 
services its clients can use, with the additional constraint that a client can access 
the object only through these services. This encapsulation of information along 
with the implementa~ion of the operations performed on the information such that 
from outside an object can be characterized by the set of services it provides is a 
key concept in object orientation. The set of services that can be requested from 
outside the object forms the interface of the object. An object may have operations 
defined only for internal use that cannot be used from outside. Such operations do 
not form part of the interface. The interface defines all ways in which an object 
can be used from outside. 

For example, consider an object directory of telephone numbers that has add
nameO, change-numberO, and find-numberO operations as part of the interface. 
These are the operations that can be invoked from outside on the object directory. 
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It mayaiso have internaioperations like hashO and insertO that are used to support 
the operations in the interface but do not form part of the interface. These operations 
can only be invoked from within the object directory (i.e., by the operations 
defined on the object). Note that objects of other classes mayaiso have the same 
interface (see the discussion on inheritance later). 

A major advantage of encapsulation is that access to the encapsulated data is 
lirnited to the operations defined on the data. Hence, it becomes much easier to 
ensure that the integrity of data is preserved, something very hard to do if any 
program from outside can directly manipulate the data structures of an object. This 
is an extremely desirable property when building large systems, without which 
things can be very chaotic. In function-oriented systems, this is usually supported 
through self-discipline by providing access functions to some data and requiring or 
suggesting that other programs access the information through the access functions. 
In 00 languages, this is enforced by the language, and no prograrn from outside 
can directly access the encapsulated data. 

Encapsulation, leading to the separation of the interface and its implementation, 
has another major consequence. As long as the interface is preserved, implemen
tation of an object can be changed without affecting any user of the object. For 
example, consider the directory object discussed earlier. Suppose the object uses 
an array of words to implement the operations defined on directory. Later, if 
the implementation is changed from the array to a B-tree or by using hashing, 
only the internals of the object need to be changed (i.e., the data definitions and 
the implementation of the operations). From the outside, the directory object 
can continue to be used in the same manner as before, because its interface is not 
changed. 

State, Behavior, and Identity 

An object has state, behavior, and identity [Bo094]. The encapsulated data for an 
object defines the state of the object. An important property of objects is that this 
state persists, in contrast to the data defined in a function or procedure, which is 
generally lost once the function stops being active (finishes its current execution). 
In an object, the state is preserved and it persists through the life of the object, i.e., 
unless the object is actively destroyed. 

The various components of the information an object encapsulates can be viewed 
as "attributes" of the object. That is, an object can be viewed as having various 
attributes, whose values (together with the information about the relationship ofthe 
object to the other objects) form the state of the object. The relationship between 
attributes and encapsulated data is tl1at the former is in terms of concepts that may 
have some meaning in the problem domain: they essentially represent the abstract 
information being modeled by the components of the data structures. 
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The state and services of an object together define its behavior. We can say that the 
behavior of an object is how an object reacts in terms of state changes when it is 
acted on, and how it acts upon other objects by requesting services and operations 
[Bo094]. Generally, for an object, the defined operations together specify the be
havior of the object. However, it should be pointed out that although the operations 
specify the behavior, the actual behavior also depends on the state of the object as 
an operation acts on the state and the sequence of actions it performs can depend 
on the state. A side effect of performing an operation may be that the state of the 
object is modified. As operations are the only means by which some activity can 
be performed by the object, it should also be clear that the current state of an object 
represents the sequence of operations that have been performed on it. 

Finally, an object has identity. Identity is the property of an object that distinguishes 
it from all other objects [Bo094]. In most programming languages, variable names 
are used to distinguish objects from each other. So, for example, one can dedare 
objects sI, s2, ... of class type Stack. Each of these variables sI, s2, ... will 
refer to a unique stack having astate of its own (which depends on the operations 
performed on the stack represented by the variable). 

Classes 

Objects represent the basic run-time entities in an 00 system; they occupy space 
in memory that keeps its state and is operated on by the defined operations on the 
object. A dass, on the other hand, defines a possible set of objects. We have seen 
that objects have some attributes, whose values constitute much of the state of an 
object. What attributes an object has are defined by the class of the object. Similarly, 
the operations allowed on an object or the services it provides, are defined by the 
dass of the object. But a dass is merely adefinition that does not create any objects 
and cannot hold any values. When objects of a class are created, memory for the 
objects is allocated. 

A dass can be considered template that specifies the properties for objects of the 
dass. Classes have [SR90]: 

1. An interface that defines which parts of an object of a class can be accessed 
from outside and how. 

2. A class body that implements the operations in the interface. 

3. Instance variables that contain the state of an object of that class. 

Each object, when it is created, gets a private copy of the instance variables, and 
when an operation defined on the class is performed on the object, it is performed 
on the state cf the particular object. 

The relationship between a class and objects of that class is similar to the relation
ship between a type and elements of that type. A class represents a set of objects 
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that share a COlnmon structure and a common behavior, whereas an object is an 
instance of a dass. The interface of the objects of a dass-the behavior and the 
state space (i.e., the states an object can take)-are all specified by the dass. The 
dass specifies the operations that can be performed on the objects of that dass and 
the interface of each of the operations. 

Note that dasses can be viewed as an abstract data type (ADT). Abtract data types 
were promulgated in the 1970s, and a considerable amount of work has been done 
on specification and implementation of ADTs. The major differences between 
ADTs and dass are inheritance and polymorphism (discussed later). Classes with
out inheritance are essentially ADTs, but with inheritance, which is considered 
a central property of object orientation, their semantics are rieher than that of an 
ADT. 

Not all operations defined on a dass can be invoked on objects of that dass from 
outside the objeet-some operations are defined that are entirely for internal use. 
The case for data dedarations within the dass is similar. Although generally it 
is fully encapsulated, in some languages it is possible to have some data visible 
from outside. However, this distinction of what is visible from outside has to be 
enforced by the language. Using the C++ dassification, the data and operations of 
a dass (sometimes collectively referred to as features) ean be dedared as one of 
three types: 

• Public. These are (data or operation) dedarations that are accessible from 
outside the dass to anyone who can aecess an object of this dass . 

• Protected. These are dedarations that are accessible from within the dass it
self and from within subdasses (actually also to those dasses that are dedared 
as friends). 

• Private. These are dedarations that are accessible only from within the dass 
itself (and to those dasses that are dedared as friends). 

Different programming languages provide different aeeess restrictions, but public 
and private separation are generally needed. At least one operation is needed to 
create (and initialize) an object and one is needed to destroy an object. The operation 
creating and initializing objects is called constructor, and the operation destroying 
objects is called destructor. The remaining operations can be broadly divided into 
two categories: modifiers and value-ops. Modifiers are operations that modify the 
state of the objeet, whiIe value-ops are operations that aeeess the objeet state but 
do not alter it. The operations defined on a dass are also called methods of that 
dass. 

When a dient requests some operations on an object, the request is actually bound 
to a method defined on the dass of the object. Then that method is executed, using 
the state of the objeet on whieh the operation is to be executed. In other words, 
the object itself provides the state while the dass provides the actual procedure for 
performing the operation on the objeet. 



www.manaraa.com

class List{ 
private: 
II data definitions to implement bag 
int list [MAX] j 
int sizej 

public: 
List() {size = O}j 
add (number)j II add a number 
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int ispresent (number)j Ilcheck if number is present 
int delete (number)j II delete a number, if present 

} 

FIGURE 6.2. Class List ofnumbers. 

An Example 

An example will illustrate these concepts. Suppose we need to have an object that 
represents a list of integers. The list consists of the numbers we put in it. We want 
it to be such that we can check if a number exists, and add or remove a number. In 
C++, the c1ass definition List (to be used for obtaining the object list) could be 
something like Figure 6.2. 

With this definition, a particular list, list, can be created by dec1aring List list. 
We can dec1are as many objects of the type List as we want. Whenever an object 
is dec1ared of the type List, the constructor operator ListO is executed, which sets 
the size of that list to O. In C++, the operator with the same name as the name of 
the c1ass is the constructor operator invoked to initialize the object whenever the 
object is created by dec1aration. We can add a number n to this bag by invoking 
list. add (n). The history of whatever numbers we add to list is preserved 
within the list (in its private data members). Much later, when we want to check if 
a number is present, it will return that the number is present if at any time in the 
past the number was added to list and it has not been deleted. 

Note that the fact that the list is implemented as an array and a size pointer is 
not visible from outside. Other programs use lists by dec1aring objects of the type 
List and then performing operations on them. If at a later time, due to efficiency 
reasons we want to change the implementation of List to use a binary search tree, 
we will have to change the data structures and the code ofthe operations. However, 
no change needs to be made to the programs that dec1are and use various lists. 

In C++, the interface of the object is whatever is defined as public. Generally, it will 
contain only the operations. The dec1arations in the private part can only be used 
from within the object; they cannot be accessed from outside. If some function is 
dec1ared as private, then that function cannot be invoked from outside; it can only 
be used by the other operations defined on the c1ass. The code for a function defined 
in a c1ass can either be given with the definition of the function interface (as was 
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done with the constructor List()) or defined elsewhere. If it is defined elsewhere, 
the definition has to be prefixed with the class name. For example, the function 
add(n) will be declared as List::add(int n). 

6.2.2 Relationships Among Objects 

An object, as a stand-alone entity, has very limited capabilities-it can only provide 
the services defined on it. Any complex system will be composed of many objects of 
different classes, and these objects will interact with each other so that the overall 
system objectives are met. In object-oriented systems, an object interacts with 
another by sending a message to the object to perform some service it provides. On 
receiving the message, the object invokes the requested service or the method and 
sends the result, if needed. Frequently, the object providing the service is called the 
server and the object requesting the service is called the dient. This form of client
server interaction is a direct fall out of encapsulation and abstraction supported by 
objects. 

If an object invokes some services in other objects, we can say that the two objects 
are related in some way to each other. All objects in a system are not related to all 
other objects. In fact, in most programming languages, an object cannot even access 
all objects, but can access only those objects that have been explicitly programmed 
or located for this purpose. During design, which objects are related has to be 
clearly defined so that the system can be properly implemented. 

If an object uses some services of another object, there is an association between 
the two objects. This association is also called a link-a link exists from one object 
to another if the object uses some services of the other object. Links frequently 
show up as pointers when programming. A link captures the fact that a message 
is ftowing from one object to another. However, when a link exists, though the 
message ftows in the direction of the link, information can ftow in both directions 
(e.g., the server may return some results). 

With associations comes the issue of visibility, that is, which object is visible to 
which. This is an issue that is very pertinent for implementation and therefore 
comes up during design. However, this is not an important issue during analysis 
and is therefore rarely dealt with during OOA. The basic issue here is that if there 
is a link from object A to object B, for A to be able to send a message to B, B 
must be visible to A in the final program. There are different ways to provide this 
visibility. Some of the important possibilities are [Bo094]: 

• The supplier object is global to the client. 

• The supplier object is a parameter to some operation of the client that sends 
the message. 

• The supplier object is a part of the client object. 

• The supplier object is locally declared in some operation. 
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Each of these has some consequences. For example, if the supplier object is a global 
object to the client, then the scoping of languages may make the client visible to 
many other objects. This is, in general, not very desirable, and should be done 
only when there is common information that many different classes need. If the 
supplier object is a parameter of a method, then the intention is to show that the 
object belongs elsewhere, and this object may access it only through this method.1f 
the supplier object is apart of the client, it means that the supplier object is declared 
as a data member of this class. This implies that when the life of the client object 
finishes, the supplier object is also destroyed. This clearly can have implications 
on sharing of objects and services. Overall, how an object is made visible to an 
object that needs to access it is an important design issue to be kept in mind when 
designing associations. 

If the supplier object is declared in the client object, there are different ways to 
implement associations. It can be implemented by a pointer in one of the objects 
(generally the client object) to the other object. The problem with this approach 
comes if the link is to be traversed in the reverse direction from the object to which 
it is pointed. For this, a search needs to be performed on all existing objects of the 
class with which this class has an association to find which object has the pointer 
to this object. Hence, this method of implementation should be used only if it is 
clear that the application is such that the reverse travers al of the link will never be 
needed. 

Another way of implementing the association is by making the link bi-directional, 
which is what links generally mean in modeling. This can be done by keeping a 
pointer to the other object in each of the two objects. This is more expensive in 
terms of storage, but it solves the problem. However, care must be taken to see that 
the links are consistent; whenever one of the pointers is modified, the other pointer 
needs to be modified accordingly. 

Yet another way of implementing association is to create a new object, whose only 
duty is to keep track of the links between objects. This approach separates the link 
maintenance job from the two objects. This is useful when there are many links. 
Each object will register its link with this special-purpose object. 

Links between objects capture the client/server type of relationship. Another type 
of relationship between objects is aggregation, which reftects the whole/part-of 
relationship. Though not necessary, aggregation generally implies containment. 
That is, if an object A is an aggregation of objects B and C, then objects B and C 
will generally be within object A (though there are situations where the conceptual 
relationship of aggregation may not get reftected as actual containment of objects). 
The main implication of this is that a contained object cannot survive without its 
containing object. With links, that is not the case. An example of aggregation in 
C++ notation is shown next: 
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class Disk { 
private: 

}; 

Track *tracks; 
disk information 

class Track { 
private: 

Sector sectors[MAX]; 

}; 

Class Sector { 
private: 

} 

In this example, a c1ass of type Disk is dec1ared, which specifies that any object 
of this type will have within it apointer to another object of c1ass Track, and this 
pointer is private information of the object that cannot be accessed from outside 
the object. The definition of the c1ass Track states that each object of this type will 
have an array of elements of c1ass Sector within it as private data members. The 
example captures the fact that a disk consists of many tracks, and each track contains 
many sectors. As shown by c1ass definitions, aggregation can be implemented by 
dec1aring the parts as objects within the c1ass, as is done while defining the c1ass 
Track. Or it can be implemented as apointer to the part, as is done while defining 
Disk. The latter method is also used for defining aggregation; hence representing 
aggregation is used only for efficiency reasons or if the object is to be accessed by 
many other objects outside the container object. 

6.2.3 Inheritance and Polymorphism 

Inheritance is a concept unique to object orientation. Some of the other concepts, 
such as information hiding, can be supported by non-object-oriented languages 
through self-discipline, but inheritance cannot generally be supported by such 
languages. It is also the concept central to many of the arguments c1aiming that 
software reuse can be better supported with object orientation. 

Inheritance is a relation between c1asses that allows for definition and implemen
tation of one c1ass based on the definition of existing c1asses [KG90]. Let us try to 
understand this better. When a c1ass B inherits from another c1ass A, B is referred 
to as the subclass or the derived class and A is referred to as the superclass or 
the base class. In general, a subc1ass B will have two parts: a derived part and an 
incremental part [KG90]. The derived part is the part inherited from A and the 
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FIGURE 6.3. Inheritance. 

incremental part is the new code and definitions that have been specifically added 
for B. This is shown in Figure 6.3 [KG90]. Objects of type B have the derived 
part as weIl as the incremental part. Hence, by defining only the incremental part 
and inheriting the derived part from an existing class, we can define objects that 
contain both. 

Inheritance is often called an "is a" relation, implying that an object of type B is 
also an instance of type A. That is, an instance of a subclass, though more than an 
instance of the superclass, is also an instance of the superclass. 

In general, an inherited feature of A may be redefined in various forms in B. This 
redefinition may change the visibility of the operation (e.g., a public operation of 
A may be made private in B), changed (e.g., by defining a different sequence of 
instructions for this operation), renamed, voided, and so on. 

The inheritance relation between classes forms a hierarchy. As inheritance rep
resents an "is a" relation, it is important that the hierarchy represent a structure 
present in the application domain and is not created simply to reuse some parts of 
an existing class. That is, the hierarchy should be such that an object of a class is 
also an object of all its superclasses in the problem domain. 

The power of inheritance lies in the fact that all common features of the subclasses 
can be accumulated in the superclass. In other words, a feature is placed in the 
higher level of abstractions. Once this is done, such features can be inherited from 
the parent class and used in the subclass direct1y. This implies that if there are many 
abstract class definitions available, when a new class is needed, it is possible that 
the new class is a specialization of one or more of the existing classes. In that case, 
the existing class can be tailored through inheritance to define the new class. 

Inheritance prornotes reuse by defining the common operations ofthe subclasses in 
a superclass. However, inheritance makes the subclasses dependent on the super
class, and a change in the superclass will directly affect the subclasses that inherit 
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from it. As elasses may change as design is refined, with each change in a elass, 
its impact on the subelasses will also have to be analyzed. This also has an impact 
on the testing of elasses. We will discuss the issue of testing later in the book. 

Let us illustrate inheritance through the use of an example. Consider a graphics 
package that has the elass GraphiealObj ect representing all graphical objects. 
A graphical object can have a zero area or a non-zero area, giving two subelasses 
ZeroAreaDbject and NonZeroAreaDbjeet. Line and Curve are two specific 
object elasses ofthe first category, and Polygon and Circle are two specific object 
elasses of the latter category. This hierarchy of elasses is shown in Figure 6.4. 

As we can see, the GraphicalObj eet has attributes of color and draw-style (which 
represents the style of drawing the figure)-both of which each graphical object 
has. It has many operations defined on it-moveO, rotateO, scaleO, etc.-the ones 
that are needed for every object by the graphics package. Note, however, that even 
though operations like rotateO and scaleO are defined for an object, they are totally 
conceptual in that their exact specification depends on the nature of the object 
(e.g., rotateO on a cirele has to do different things than rotateO on a line). Hence, 
these operations have to be defined for each object. In C++, such operations that 
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are declared in a superclass and redefined in a subclass are declared as virtual in 
the superclass. (This helps in implementing dynarnic binding of the operations; 
see discussion later.) If an operation specified in a class is always redefined in its 
subclass, then the operation can be defined as pure virtual (in C++, this is done 
by equating it to 0), implying that the operation has no body. The implication of 
existence of these operations is that no objects of this class can be created, as 
some of the operations declared in the class are not defined and hence cannot be 
performed. Such a class is sometimes called an abstract base dass. The C++ class 
skeletons for this hierarchy are shown next: 

class GraphicalObject { 
protected: 

}; 

unsigned int color; 
unsigned int draw_style; 

public: 
virtual void move( Point &newLocation ); 
virtual void rotate( double angle ); 
virtual void scale( double XScale , double YScale); 
void setColor( unsigned int col ); 
void setDrawStyle( unsigned int style ); 

class ZeroAreaObject: public GraphicalObject {}; 

class NonZeroAreaObject: public GraphicalObject { 
protected: 

}; 

unsigned int fillColor; 
unsigned int fillStyle; 

public: 
virtual fillO; 

class Line: public ZeroAreaObject { 
private: 

}; 

Point start, end; 
public: 

int length 0 ; 
Point &midPoint(); 
// Inherited virtual features are given definition here 
void move( Point &newLocation }; 
void rotate( double angle ); 
void scale( double XScale , double YScale ); 
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class OpenCurve: public ZeroAreaObject { 
private: 

}; 

Point *controlPoints; 
public: 

// Inherited virtual features are given definition here 

class Polygon: public NonZeroAreaObject { 
private: 

}; 

Point *vertices; 
unsigned int noOfSides; 

public: 
double areaO; 
// Inherited virtual features are defined he re 

class Circle: public NonZeroAreaObject { 
private: 

}; 

Point centre; 
unsigned int radius; 

public: 
double area 0 ; 
// Inherited virtual features are defined here 

Inheritance can be broadly classified as being of two types: strict inheritance and 
nonstrict inheritance [SR90]. In strict inheritance a subclass takes all the features 
from the parent c1ass and adds additional features to specialize it. That is, all data 
members and operations available in the base c1ass are also available in the derived 
c1ass. This form supports the "is-a" relation and is the easiest form of inheritance. 
Nonstrict inheritance occurs when the subc1ass does not have all the features of 
the parent c1ass or some features have been redefined. This form of inheritance has 
consequences in the dynarnic behavior and complicates testing. 

A class hierarchy need not be a simple tree structure. It may be a graph, which 
implies that a c1ass may inherit from multiple c1asses. This type of inheritance, 
when a subclass inherits from many superc1asses, is called multiple inheritance. 
Consider part of the c1ass hierarchy oflogic gates for a system for simulating digital 
logic of circuits as shown in Figure 6.5. In this example, there are separate c1asses 
to represent And gates, Nor gates, and Or gates. The c1ass for representing Nand 
gates inherits from both the c1ass for And gates and the c1ass for Not gates. That is, 
all the definitions (instances and operations) that have been dec1ared as public (or 
protected) in the c1asses NotGate and AndGate are available for use to the c1ass 
NandGate. Similarly, the class NorGate inherits from the OrGate and NotGate. 
Like in regular inheritance, a subc1ass can rede fine any feature if it desires. 
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Multiple inheritance brings in some new issues. First, some features of two-parent 
classes may have the same name. So, for example, there may be an operation 00 
in class A and class B. If a class C inherits from class A and class B, then when 
00 is invoked from an object of class C, if 00 is not defined locally within C, 
it is not clear from where the definition of 00 should be taken-from class A or 
from class B. This ambiguity does not arise if there is no multiple inheritance; the 
operation of the closest ancestor in which 00 is defined is executed. Different 
language mechanisms or rules can be used to resolve this ambiguity. In C++, when 
such an ambiguity arises, the programmer has to resolve it by explicitly specifying 
the superclass from which the definition of the feature is to be taken. 

Multiple inheritance also brings in the possibility of repeated inheritance, where a 
class inherits more than once from the same class [SR90]. For example, consider 
the situation shown in Figure 6.6 where classes Band C inherit from class A and 
class D inherits from both B and C. A situation like this means that effectively class 
D is inheriting twice from A-once through B and once through C. This form of 
inheritance is even more complex, as features of A may have been renamed in B 
and C, and can lead to run-time eITors. 

Due to the complexity that comes with multiple inheritance and its variations and 
the possibility of confusion that comes with them, it is generally advisable to avoid 
their usage. 

Inheritance brings in polymorphism, a general concept widely used in type theory, 
that deals with the ability of an object to be of different types. In OOD, polymor
phism comes in the form that a reference in an 00 program can refer to objects 
of different types at different times. Here we are not talking about "type coer
cion," whicb is allowed in languages like C; these are features that can be avoided 
if desired. In object-oriented systems, with inheritance, polymorphism cannot be 
avoided-it must be supported. The reason is the "is a" relation supported by 
inheritance-~ object x declared to be of class B is also an object of any class A 
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that is the superclass of B. Hence, anywhere an instance of A is expected, x can 
be used. 

With polymorphism, an entity has a statie type and a dynamic type [KG90]. The 
statie type of an object is the type of whieh the object is declared in the program 
text, and it remains unchanged. The dynmnic type of an entity, on the other hand, 
can change from time to time and is known only at reference time. Once an entity 
is declared, at compile time the set of types that this entity belongs to can be 
determined from the inheritance hierarchy that has been defined. The dynamic 
type of the object will be one of this set, but the actual dynamie type will be 
defined at the time of reference of the object. In the preceding example, the static 
type of x is B. Initially, its dynamie type is also B. Suppose an object y is declared 
of type A, and in some sequence of instructions there is an instruction x := y. Due 
to the "is a" relation between A and B, this is a valid statement. After this statement 
is executed, the dynamic type of x will change to A (though its statie type remains 
B). This type of polymorphism is called object polymorphism [SR90], in whieh 
wherever an object of a superclass can be used, objects of subclasses can be used. 

This type of polymorphism requires dynamic binding of operations, whieh brings 
in feature polymorphism. Dynamic binding means that the code associated with 
a given procedure call is not known until the moment of the call [KG90]. Let us 
illustrate with an example. Suppose x is a polymorphie reference whose statie type 
is B but whose dynamic type could be either A or B. Suppose that an operation 0 
is defined in the class A, whieh is redefined in the class B. Now when the operation 
o is invoked on x, it is not known statieally what code will be executed. That is, 
the code to be executed for the statement x. 0 is decided at ron time, depending 
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on the dynamic type of x-if the dynamic type is A, the code for the operation 
o in dass A will be executed; if the dynamic type is B, the code far operation 0 
in dass B will be executed. This dynamic binding can be used quite effectively 
during application development to reduce the size of the code. For example, take the 
case of the graphical object hierarchy discussed earlier. In an application, suppose 
the elements of a figure are stored in an array A (of GraphicalObject type). 
Suppose element 1 of this array is a line, element 2 is a circ1e, and so on. Now if we 
want to rotate each object in the figure, we simply loop over the array performing 
A Ei] . rotate (). For each A[i], the appropriate rotate function will be executed. 
That is, which function A[i].rotate() refers to is decided at run time, depending on 
the dynamic type of object A[i]. 

This feature polymorphism, which is essentially overloading of the feature (Le., 
a feature can mean different things in different contexts and its exact meaning is 
determined only at run time) causes no problem in strict inheritance because all 
features of a superdass are available in the subc1asses. But in nonstrict inheritance, 
it can cause problems, because a child may lose a feature. Because the binding of 
the feature is determined at run time, this can cause a run-time error as a situation 
may arise where the object is bound to the superdass in which the feature is not 
present. 

6.2.4 Design Concepts 

So far we have discussed general concepts of object orientation and some key prop
erties of the basic building blocks far OOD. Now let us look at some concepts for 
creating good 00 design. Like in functional designs, just understanding the basic 
building blocks is not sufficient to create designs that are simple to understand and 
maintain. While designing, there are always many options available, and deciding 
which option to select requires some guidelines for distinguishing a "good" design 
from a "bad" design. Here we discuss some of the features a good design should 
have [KG90]. The basic objective of any design process is to produce modular de
signs so that each module can be understood and modified separately. In an OOD, 
the basic modules are c1asses, and proper design of dasses is the central concern 
of an OOD methodology. Here we discuss some desirable properties that c1asses 
in a good design should have. 

Information Hiding. A c1ass supports information hiding by hiding the data in the 
dass and only providing some specified operations on this data. The implementa
tion of these operations is also hidden. This separation of c1ass interface and c1ass 
implementation naturally supports information hiding. However, many languages 
provide methods by which information hiding can be violated. For example, in 
C++, friends of a c1ass can direct1y access the private members of a dass. Fur
thermore, any part of the encapsulated information can be made available to outside 
by making it public. Use of such constructs violate the information-hiding prin-
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ciple, presumably to provide shortcuts to the designer or programmer. Information 
hiding requires that such violations do occur. 

Coupling. The basic idea behind coupling is the same as in Chapter 5-two objects 
are coupled if at least one of them acts on the other and at least one of them is affected 
by the other. In other words, if two objects interact, they are coupled. Interaction 
between classes comes due to the relationships between them. For example, if an 
instance of class A is declared within class B, then each instance of class B will 
contain an instance of class A, and hence objects of class B can invoke operations on 
the instance of class A contained in the object. Hence, in this case the two classes are 
coupled. There are various other ways in which objects may be coupled. In general 
we can say that if any method of an object uses methods or instance variables of 
another object, then the two objects are coupled [CK94]. Two classes are coupled 
if methods declared in one class use methods or instance variables of the other 
class. Like in function-oriented design, the objective of the design activity should 
be to keep the coupling between objects or classes to aminimum, as the higher the 
coupling the harder it will be to understand and modify classes separately. In other 
words, during design, the connections between the objects should be minimized. 

Cohesion. Cohesion is the property that specifies how tightly bound the elements of 
a module are. It is desirable to have each class highly cohesive-all the elements are 
together to support a well-defined abstraction. A class is naturally a cohesive entity, 
as all its data and operations are packaged together for a purpose. However, if a class 
does not support a well-defined abstraction or does not represent some concept or 
entity in the problem domain, then its cohesion weakens. For strong cohesion, each 
data defined within the class and all the operations on the class should naturally 
belong to the concept being modeled by the class. Adding functions that do not 
naturally belong to the concept to be modeled cr adding further information to 
create "Iarge" objects that do too many things or support multiple concepts weaken 
the cohesion. 

Cohesion can be modeled by the degree of similarity between methods of the 
same class [CK94]. The degree of similarity between two methods of a class is the 
intersection of the sets of instance variables of the class the two methods access. 
The higher the degree of similarity between methods, the more cohesive a class 
iso In other words, if the different methods of the class operate on the same set of 
instance variables of the class, the class is cohesive. 

Reuse. The object-oriented paradigm provides strong support for software reuse. In 
fact, this is one of the basic reasons for the increased interest in object orientation. 
There are basically two ways in which reuse is supported in 00. The first is through 
class definition--every time a new object of a class is defined, we reuse all the code 
and declarations of that class. However, this type of reuse can be supported in the 
function-oriented approach also. The other type of reuse, which is particular to 
object orientation, is through inheritance. 
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When a elass is deelared as a subelass of an existing elass, it inherits all the deela
rations and definitions of the superelass. Furthermore, the inheritance mechanism 
allows the existing elass to be specialized by redefining some of the existing oper
ations or by adding new operations to suit the existing purpose. One can imagine 
that if there is a large library of elass definitions available, it is quite likely that 
when a new elass is desired, some existing elass will be very "elose," though not 
exactly the same, to what is desired. With inheritance, such a class definition can be 
used to define the new elass-all the features of the existing class that are desired 
for the new elass are kept as it, the others are redefined, or new services are added. 
By this, all the parts ofthe existing elass that can be reused are used in the new elass 
definition. It is important to note that in this reuse, the class definition of the existing 
class is not modified. This is what makes reuse potentially very useful compared 
to the approach followed in function-oriented systems, where an existing function 
elose to the desired function is actually modified to support the desired functional
ity. This requires that elasses be designed properly to enable reuse [JF88]. We will 
not go into more detail of software reuse and the impact of object orientation on 
it, as this is an advanced topic beyond our scope. Some guidelines for designing 
reusable classes are, however, discussed later based on the work in [JF88]. 

It should be pointed out that the use of inheritance actually increases coupling 
between elasses-with inheritance the two classes are tightly coupled. In general, 
modularity is also diluted due to this dependence between c1asses-any change 
in the definition of a elass can impact all its subc1asses. So it is imperative that 
inheritance is used with care. It should only be used when it supports a clear 
hierarchy that can be easily identified in the problem or the solution domain and 
when the elass definitions are stable. Inheritance is useful if the benefits it provides 
in terms of representation and reuse outweigh the cost of increased coupling that 
comes with inheritance. 

Some Guidelines. In an 00 design, class definitions make up the bulk of the system 
definition. Therefore, the design of elasses has a major impact on the overall quality 
of the design. Here we present a set of guidelines for class design that can be used to 
produce "good quality" elasses [KG90], or reusable c1asses [JF88]. Most ofthese 
roles, and their intent, are self-explanatory and based on the preceding discussion. 

1. The public interface of a class should only contain the operations defined 
on the class. That is, the data definitions should not be a part of the public 
interface. 

2. Only the operations that form the interface for a c1ass, that is, the ones needed 
by the users of the elass, should be the public members of the c1ass. 

3. An instance of a c1ass should not send messages directly to components of 
another c1ass. That is, if there is a class C defined inside a elass B, then 
objects of a class A should not direct1y perform operations on objects of c1ass 
C (though many languages will permit it). 
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4. Each operation defined on a class should be such that it either modifies or 
accesses some data defined in the class. 

5. A class should be dependent on as few classes as possible. 

6. The interaction between two classes should be explicit. That is, global objects 
should be avoided, and any objects needed by an object should be explicitly 
passed as a parameter or accessed through other explicitly defined means. 

7. Each subclass should be developed as a specialization of the superclass with 
the public interface of the superclass becoming part of the public interface of 
the subclass. 

8. The inheritance hierarchy should model some hierarchy that naturally exists, 
and the class definition at each level should represent some concept. The top 
of the hierarchy should be an abstract class. 

9. Inside a class, case analysis on object type should be avoided. If this is needed, 
it should be done by sending messages. 

10. The number of arguments and the size of methods should be kept small. 

6.3 Design Notation and Specification 

Frequently, design approaches use some graphical notation to represent the design. 
This notation is generally independent of the methodology (even though they are 
typically proposed together). Notations are compact pictorial representations of 
a design, and they are particularly useful in the process of design, Le., while the 
designer is designing the system. However, for finally specifying the design (say, 
in a design document), the design notations are generally not sufficient. Also, 
converting them to code (or detailed design) is not convenient. So, frequently, 
in formal design representations, textual forms are used, which are essentially 
skeletons of the final programs without the logic in them. Here, we briefty discuss 
the notation used for creating an object-oriented design and specification language 
that can be used for specifying a design. 

The notation is similar to the notation used in 00 analysis. As classes form the 
main component of an OOD, class representation is the basic unit of the notation. 
A class is represented as a rectangle with three parts-the first part gives its name, 
the second part gives its attributes, and the third part gives the methods it has. 
Association between objects of classes is represented by drawing a line between 
the two class representations. An association may also be given a name (and can 
have attributes of its own). Multiplicity in an association is expressed by putting a 
solid ball adjacent to the class for which multiple objects may be related through the 
relation represented by the association. Aggregation is represented with a diamond 
attached to the "container" class, and inheritance is shown by a triangle connecting 
the superclass and all the subclasses. In addition to these, we have a template class, 
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FIGURE 6.7. Notations for Object-Oriented Design. 

which represents the"generic dasses," where the type ofthe major attribute ofthe 
dass is not defined; it is given a symbolic name and the actual type is specified when 
objects of the type are defined. For example, we may define a template dass Stack, 
whose element type is ElmentType. So, whether it is a stack of integers, characters, 
or strings is not specified. The type of the element of the stack is specified when 
an object of the type Stack is created. The notations for all these are shown in 
Figure 6.7. 

The final design for a system will be composed of several of these elements. As is 
generally the case with any creative activity, design is an iterative process where 
we start with some structure and refine and enhance it until the designer is satisfied. 
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For this iterative process, pictorial representations are quite handy. As mentioned 
earlier, to represent the final design, textual specifications are frequently used. In 
the design specification, most of the modules and their interfaces are specified.1t is 
most efficient if the specification language is close to the target language in which 
the final software is to be implemented. In this case, translating from design to 
code becomes easier, and errors that may be introduced during the translation are 
reduced. 

The final design specification needs to specify all the classes, their relationships, 
global data structures, and the main parts of the main program. With this design 
specification, if it is in a language that is consistent with the target implementation 
language, then during coding, only further details need to be filled. In our design 
specification language, the classes are defined using C++ class structures, though 
the logic of the methods is not specified. That is, all the major instance variables 
and all the operations are specified, together with their visibility restrictions (i.e., 
whether private, restricted, or public). All the objects defined in the main program 
or as global are specified and abrief description of the main program is given. This 
forms the complete design specification, which can be used for specification and 
further implementation. 

6.4 Design Methodology 

Many design and analysis methodologies have been proposed. Some of the major 
ones are [Bo094, CY91, Jac92, R +91]. As we stated earlier, a methodology basically 
uses the concepts (of 00 in this case) to provide guidelines and notation for the 
design activity. Though methodologies are useful, they do not reduce the activity 
of design to a sequence of steps that can be followed mechanically. Due to this, 
the overall approach and the principles behind them are often more useful than the 
details of the methodologies. Due to this, the particular methodology used often 
has a limited impact. In fact, most experienced designers tailor the methodology 
to suit their way of thinking and working. We will discuss only one particular 
methodology here, as at an abstract level most methodologies start to seem very 
similar and vary mostly in details. 

For any large system, the problem has to first be partitioned into subsystems, so that 
each subsystem can be separately designed. Sometimes, this high-level partitioning 
will be evident from the subsystems that exist in the problem domain. At other 
times, this partitioning will have to be done by the designer. This partitioning of a 
problem into components is what is sometimes called the complexity management 
component of a design methodology [MP92]. This complexity management is 
important from the design and presentation viewpoints-it is hard to create a design 
for a large system as a whole, and it is hard to represent the design of a large system 
for presentation and evaluation purposes. Most analysis and design techniques do 
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not address this problem in any detail and suggest some general guidelines for 
it. Combining objects into a subject, as discussed briefty during object-oriented 
analysis, is one such guideline proposed by [CY90). In the OMT methodology, 
which we will discuss here, it is suggested that the system be broken into subsystems 
by considering a system as layers or partitions. However, no detailed guidelines 
are given for this partitioning. We assurne that using the general principles of 
problem partitioning and the concepts of layering and refinement, a system is 
broken into high-level subsystems. The problem we address is how to produce an 
object-oriented design for a subsystem, which can be viewed as a system in its own 
right and will be referred to as the system in the rest of the chapter. 

As we discussed earlier, the 00 design of a system consists of specification of all 
the classes and objects that will exist in the system implementation, together with 
a main function that provides the very high-level ftow of control in the system. 
Tbe main function is frequently not very significant in systems modeled using 
object orientation, because most of the work is done by objects themselves and the 
primary objective ofthe design activity is to produce the object design, in wh ich all 
the classes are completely specified. That is, for each class, the attributes, methods, 
and associations are clearly identified. A complete object design should be such 
that in the implementation phase only further details about methods need to be 
added. A few low-Ievel objects may be added later, but most of the classes and 
objects and their relationships are identified during design. 

In 00 design, the 00 analysis forms the starting step. Using the model produced 
during analysis, a detailed model of the final system is built. As we discussed ear
lier, in an object-oriented approach, the separation between analysis and design is 
not very clear and depends on the perception. We will follow what we defined in 
Chapter 3 regarding what constitutes the output of an OOA-an object model of 
the problem. The OMT methodology that we discuss for design considers dynamic 
modeling and functional modeling parts ofthe analysis [R+91). As these two mod
els have little impact on the object model produced in OOA or on the SRS, we 
view these modeling as part of the design activity. Hence, performing the object 
modeling can be viewed as the first step of design. With this point of view, the de
sign methodology for producing an 00 design consists of the following sequence 
of steps: 

• Produce the object model. 

• Produce the dynamic model and use it to define operations on classes. 

• Produce the functional model and use it to define operations on classes. 

• Define algorithms for implementing major operations, and from them identify 
internal classes and operations. 

• Optimize and package. 

We discussed object modeling in Chapter 3, along with a methodology for perform
ing the modeling. Any other methodology for object modeling can be followed, 
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as long as the output of the modeling activity is the object diagram representing 
the problem structure. Hence, the first step of the design is generally performed 
during the requirements phase when the problem is being modeled for producing 
the SRS. Briefty, during analysis, the basic goal is to produce an object model of 
the problem domain. Tbis requires identification of object types in the problem do
main, the structures between classes (both inheritance and aggregation), attributes 
of the different classes, associations between the different classes, and the services 
each class needs to provide to support the system. For further details, the reader 
should refer to Chapter 3. 

6.4.1 Dynamic Modeling 

Object modeling tries to model the static structure of the system, and the object 
diagram produced from modeling represents the structure graphically. Tbe object 
model produced during modeling forms the starting point for object design. How
ever, just modeling the statie structure is not sufficient for designing the system, 
as the desired effect of the events on the system state will also impact the final 
structure of the system. After all, the state of the system is the state of its objects, 
and the state of an object changes through the execution of its operations. So, a 
better understanding of the dynamie behavior of the system will help in further 
refining the object design. 

Tbe dynamie model of a system aims to specify how the state of various objects 
changes when events occur. An event is something that happens at some time 
instance. For an object, an event is essentially arequest for an operation. An event 
typieally is an occurrence of something and has no time duration associated with it. 
Each event has an initiator and aresponder. Events can be internal to the system, in 
which case the event initiator and the event responder are both within the system. 
An event can be an extern al event, in which case the event initiator is outside the 
system (e.g., the user or a sensor). Events of the same type can be grouped into 
event classes. 

A scenario is a sequence of events that occur in a particular execution of the system 
[R+91]. A scenario may describe all the events that occur in the system or may 
limit itself to the events associated with a group of objects. A scenario can be 
described textually by enumerating the sequence of events, or it can be shown 
as an event trace diagram, in which events between objects are shown (external 
events are shown to be emanating from an extern al object). From the scenarios, 
the different events being performed on different objects can be identified, which 
are then used to identify services on objects. The different scenarios together can 
completelycharacterize the behavior of the system. If the object design is such 
that it can support all the scenarios, we can be sure that the desired dynamic 
behavior of the system can be supported by the design. This is the basic reason 
for performing dynamic modeling. Use of scenarios is a central concept in object-
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oriented approaches. In the methodology proposed in [Jac92], these are called use 
cases, and they are used heavily. A use case specifies the interaction of actors 
(which are outside the system to be designed but interact with the system) with the 
system in natural English. Scenarios and their modeling are also used in [Bo094]. 
The major steps in dynamic modeling are [R+91]: 

I. Prepare scenarios of typical interaction sequences. 

2. Far each scenario, identify events between objects and prepare event traces. 

3. Build state diagrams. 

4. Match events between objects to verify consistency. 

It is best to start dynamic modeling by looking at scenarios being triggered by 
extemal events. The scenarios should not necessarily cover all possibilities, but the 
major ones should be considered. Such scenarios will not exist ar will be trivial in 
batch processing systems but are significant in interactive systems. First scenarios 
for "normal" cases should be prepared, then scenarios for "exceptional" cases 
should be prepared. For example, in the system for a restaurant that we discussed 
in Chapter 3, the "normal" scenario could be: 

Menu is given to the customer; customer reads the menu. 
Order of the customer is taken. 
Order is sent to the kitchen. 
Dishes are prepared and meal served. 
Bill is produced for this order for the customer. 
Customer is given the bill; customer pays the money. 
Customer is given the receipt. 

An "exception" scenario could be if the ordered item was not available or if the 
customer cancels his order. From each scenario, events have to be identified. Events 
are interactions with the outside world and object-to-object interactions. All the 
events that have the same effect on the ftow of control in the system are grouped as 
a single event type. Note that two events may be of the same event type even though 
the value of their parameters is different. Each event type is then allocated to the 
object c1asses that initiate it and that service the event. With this done,a scenario 
can be represented as an event trace diagram showing the events that will take place 
on the different objects if the execution corresponding to the scenario takes place. 
The objects related to the event and the temporal order of occurrence of events is 
also represented in the event trace diagram. Note that to represent a scenario that 
shows the interaction with objects in the environment ofthe system, these extemal 
objects also have to be shown in the diagram to completely represent the scenario. 
A possible event trace diagram of the preceding scenario is given in Figure 6.8. 

Once scenarios are constructed, various events on objects that are needed to support 
executions corresponding to the various scenarios are known. The effect of these 
events on individual objects can be shown as an object diagram. The object diagram 
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dishes served - sent to kitchen 

bill given 

receipt given 

FIGURE 6.8. The event trace diagram. 

is a finite state machine with states representing the different states of the object and 
events causing the state transitions. Once the state diagrams are built, each scenario 
corresponds to a path in the state diagram. The state diagrams help understand 
the behavior of objects under different state conditions and different events (Le., 
invocation of operations). 

The main reason for performing dynamic modeling is that scenarios and event 
trace diagrams extend the initial design based on the object model produced during 
analysis. Generally speaking, for eachevent in the event trace diagrams, there will be 
an operation on the object on which the event is invoked. So, by using the scenarios 
and event traces we can further refine our view of the objects and add operations 
that are needed to support some scenarios but may not have been identified during 
object modeling. For example, from the event trace diagram in Figure 6.8, we can 
see that "pI ace order" and "generate bill" will be two operations required on the 
object order if the scenario is to be supported. 

Scenarios and their impact on design are commonly accepted methods during 
object-oriented design. Many design approaches use the concept of scenarios in one 
form or another. Scenarios help understand the interplay between different objects 
in the system and help determine the interface of the different objects. Explicit 
specification of the scenarios also help cIarify the specifications of the system. 
As they are generally developed from the extemal point of view, they capture 
how the system is to be used by the environment and the users, thereby helping 
cIearly specify the system interface and behavior. We did not go into detail of the 
state modeling of the objects, as the role of state modeling is more to understand 
an object better, which will undoubtedly help in implementing the cIass, but has 
a limited role in understanding the object interfaces and the relationship between 
objects. The state diagrams for objects can be viewed as a tool to do detailed design 
for the cIass for that object, giving the ftow of control in a pictorial form. Though 
OMT treats state modeling as an essential component of modeling, it does not 
specify cIearly how it affects the object design. Furthermore, other methodologies 
(e.g., [Jac92]) do not consider state modeling of objects an integral component of 
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design. For these reasons, we believe that the state transition diagram is of limited 
use during system design but may be more useful during detailed design. 

6.4.2 Functional Modeling 

The functional model describes the computations that take place within a sys
tem. It is the third dimension in modeling-object modeling looks at the static 
structure of the system, dynamic modeling looks at the events in the system, and 
functional modeling looks at the functionality of the system. In other words, the 
functional model of a system specifies what happens in the system, the dynamic 
model specifies when it happens, and the object model specifies what it happens 
to [R+91]. 

A functional model of a system specifies how the output values are computed in 
the system from the input values, without considering the control aspects of the 
computation. This represents the functional view of the system-the mapping from 
inputs to outputs and the various steps involved in the mapping. Generally, when the 
transformation from the inputs to outputs is complex, consisting of many steps, the 
functional modeling is likely to be useful. In systems where the transformation of 
inputs to outputs is not complex, the functional model is likely to be straightforward. 

As we have seen, the functional model of a system (either the problem domain or 
the solution domain) can be represented by a data ftow diagram (DFD). We have 
used DFDs in problem modeling, and the structured design methodology, discussed 
in Chapter 5, uses DFDs to represent the model for the proposed solution (which is 
then converted into a structure chart). We will not discuss methods for producing 
the DFD of a system; the rules for doing so have been discussed in earlier chapters. 
DFDs model a system in terms of data ftows, processes, and data stores to represent 
the ftow of data within the system. Data ftows represent the various forms the data 
takes before becoming the desired output form, whereas the processes represent the 
transformation functions responsible for transforming one form of data to another. 
Eventually, through the network of processes, the input data is transformed into 
the desired output data. Data stores are essentially files or objects that passively 
store data. 

Once the functional model of the system is finished using DFDs, its role in the 
00 design has to be defined. Just as with dynamic modeling, the basic purpose of 
doing functional modeling, when the goal is to obtain an object oriented design 
for the system, is to use the model to make sure that the object model can perform 
the transformations required from the system. As processes represent operations 
and in an object-oriented system, most of the processing is done by operations on 
objects, alI processes should show up as operations on objects. Some operations 
might appear as single operations on an object; others might appear as multiple 
operations on different objects, depending on the level of abstraction ofthe DFD. If 
the DFD is sufficiently detailed, most processes will occur as operations on objects. 
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The DFD also specifies the abstract signature of the operations by identifying the 
inputs and outputs. 

6.4.3 Defining Internal Classes and Operations 

Tbe objects identified so far are the objects that come from the problem domain. Tbe 
methods identified on the objects are the ones needed to satisfy all the interactions 
with the environment and the user and to support the desired functionality. However, 
the final object design is a blueprint for implementation. Hence, implementation 
issues have to be considered. While considering implementation issues, algorithm 
and optimization issues arise. These issues are handled in this step. 

First, each object is critically evaluated to see if it is needed in its present form in 
the final implementation. Some of the objects might be discarded if the designer 
feels they are not needed during implementation. 

Then the implementation of operations on the objects is considered. For this, rough 
algorithms for implementation might be considered. While doing this, a complex 
operation may get defined in terms of lower-Ievel operations on simpler objects. In 
other words, effective implementation of operations may require heavy interaction 
with so me data structures and the data structure to be considered an object in its own 
right. These objects that are identified while considering implementation concems 
are largely support objects that may be needed to store intermediate results or to 
model some aspects of the object whose operation is to be implemented. The classes 
for these objects are called container classes. In [Ja189a] they were called nested 
objects. However, some of these classes might be needed for implementation of 
methods of different classes and hence need not be defined as local to a class. 

Once the implementation of each class and each operation on the class has been 
considered and it has been satisfied that they can be implemented, the system design 
is complete. The detailed design might also uncover some very low-Ievel objects, 
but most such objects should be identified during system design. 

6.4.4 Optimize and Package 

In the design methodology used, the basic structure of the design was created 
during analysis. As analysis is concemed with capturing and representing various 
aspects of the problem, some inefficiencies may have crept in. In this final step, the 
issue of efficiency is considered, keeping in mind that the final structures should 
not deviate too much from the logical structure produced by analysis, as the more 
the deviation, the harder it will be to understand a design. Some of the design 
optimization issues are discussed next [R+91]. 

Adding Redundant Associations. The association in the initial design may make 
it very inefficient to perform some operations. In some cases, these operations can 
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be made more efficient by adding more associations. Consider the example where 
a Company has a relationship to a person (a company employs many persons) 
[R+91]. A person may have an attribute languages-spoken, which lists the lan
guages the person can speak. If the company sometimes needs to determine all its 
employees who know a specific language, it has to access each employee object 
to perform this operation. This operation can be made more efficient by adding an 
index in the Company object for different languages, thereby adding a new rela
tionship between the two types of objects. This association is largely for efficiency. 
For such situations, the designer must consider each operation and determine how 
many objects in an association are accessed and how many are actually selected. 
If the hit ratio is low, indexes can be considered. 

Saving Derived Attributes. A derived attribute is one whose value can be deter
mined from the values of other attributes. As such an attribute is not independent, 
it may not have been specified in the initial design. However, if it is needed very 
often or if its computation is complex, its value can be computed and stored once 
and then accessed later. This may require new objects to be created for the derived 
attributes. However, it should be kept in mind that by doing this the consistency 
between derived attributes and base attributes will have to be maintained and any 
changes to the base attributes may have to be reftected in the derived attributes. 

Use ofGeneric Types. A language like C++ allows "generic" classes to be dec1ared 
where the base type or the type of some attribute is kept "generic" and the actual 
type is specified only when the object is actually defined. (The approach of C++ 
does not support true generic types, and this type of definition is actually handled by 
the compiler.) By using generic types, the code size can be reduced. For example, 
if a list is to be used in different contexts, a generic list can be defined and then 
instantiated for an integer, real, and char types. 

Adjustment ofInheritance. Sometimes the same or similar operations are defined 
in various classes in a class hierarchy. By making the operation slightly more 
general (by extending interface or its functionality), it can be made a common 
operation that can be "pushed" up the hierarchy. The designer should consider 
such possibilities. Note that even if the same operation has to be used in only some 
of the derived classes, but in other derived classes the logic is different for the 
operation, inheritance can still be used effectively. The operation can be pushed to 
the base class and then redefined in those classes where its logic is different. 

Another way to increase the use of inheritance, which prornotes reuse, is to see if 
abstract c1asses can be defined for a set of existing classes and then the existing 
classes considered as a derived class of that. This will require identifying common 
behavior and properties among various classes and abstracting out a meaning
ful commön superc1ass. Note that this is useful only if the abstract superc1ass is 
meaningful and the c1ass hierarchy is "natural." A superc1ass should not be created 
simply to pack the common features on some classes together in a class. 
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Besides these, the general design principles discussed earlier should be applied 
to improve the design-to make it more compact, efficient, and modular. Often 
these goals will confiict. In that case, the designer has to use his judgment about 
which way to go. In general, as we stated in Chapter 5, we take the view that 
understandability and modularity should be given preference over efficiency and 
compactness. 

6.4.5 Examples 

Before we apply the methodology on some examples, it should be remembered 
again that no design methodology reduces the activity of producing a design to a se
ries of steps that can be mechanically executed; each step requires some amount of 
engineering judgment. Furthermore, the design produced by following a method
ology should not be considered the final design. The design can and should be 
modified using the design principles and the ultimate objectives of the project in 
mind. Methodologies are essentially guidelines to help the designer in the design 
activity; they are not hard-and-fast rules. The examples we do here are relatively 
small, and all aspects of the methodology do not get refiected in them. However, 
the design of the case study, given at the end of the chapter, will provide a more 
substantial example for design. 

The Word-Counting Problem 

Let us first consider the word counting problem discussed in Chapter 5 (for which 
the structured design was done). The initial analysis c1early shows that there is 
a File object, which is an aggregation of many Word objects. Further, one can 
consider that there is a Counter object, which keeps track of the number of different 
words. It is a matter of preference and opinion whether Counter should be an 
object, or counting should be implemented as an operation. If counting is treated 
as an operation, the question will be to which object it belongs. As it does not 
belong "naturally" to either the c1ass Word nor the c1ass File, it will have to be 
"forced" into one of the c1asses. For this reason, we have kept Counter as aseparate 
object. The basic problem statement finds only these three objects. However, further 
analysis for services reveals that some history mechanism is needed to check if the 
word is unique. The object model obtained after doing object modeling is shown 
in Figure 6.9. 

Now let us consider the dynamic modeling for this problem. This is essentially a 
batch processing problem, where a file is given as input and some output is given by 
the system. Hence, the scenarios for this problem are straightforward. For example, 
the scenario for the "normal" case can be: 
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Counter 
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increment ( ) 
display () 

FIGURE 6.9. Object model for the word counting problem. 

System prompts for the file name; user enters the file name. 
System checks for existence of the file. 
System reads the words from the file. 
System prints the count. 

From this simple scenario, no new operations are uncovered, and our object diagram 
stays unchanged. Now we consider the functional model. One possible functional 
model is shown in Figure 6.10. The model reinforces the need for some object where 
the his tory of what words have been seen is recorded. This object is used to check 
the uniqueness of the words.1t also shows that various operations like incrementO, 
isuniqueO, and addToHistoryO are needed. These operations can either appear as 
operations in classes or they will have to be implemented in the main program. In 
this example, most of these processes are reflected as operations on classes and are 
already incorporated in the object model. 

Now we are at the last two steps of design methodology, where implementation and 
optimization concems are used to enhance the object model. First decision we take 
is that the his tory mechanism will be implemented by a binary search tree. Hence, 
instead ofthe object History, we have a different object Btree. Then, for the class 
Word, various operations are needed to compare different words. Operations are 
also needed to set the string value for a word and retrieve it. The final object model 
is similar in structure to the one shown in Figure 6.9, except for these changes. 

The final step of the design activity is to specify this design using some design 
specification language. This is not a part of the design methodology, but it is an 
essential step, as the design specification is what forms the major part of the design 
document. The design specification, as mentioned earlier, should specify all the 
classes that are in the design, all methods of the classes along with their interfaces 
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FIGURE 6.10. Functional Model for the word counting problem. 

(inc1uding which other methods of other objects they invoke), and the basic steps 
in the main pro gram. We use C++ c1ass structures for our specification. The final 
specification of this problem is given next. This specification can be reviewed for 
design verification and can be used as a basis of implementing the design (in C++). 

class Word { 
private : 

}; 

char *string; // string representing the word 
public: 

booloperator ( Word ); // Checks for equality 
bool operator< ( Word ); 
bool operator> ( Word ); 
Word operator = ( Word ); // The assignment operator 
void setWord ( char * ); // Sets the string for the word 
char *getWord (); // gets the string for the word 

class File { 
private: 

}; 

FILE inFile; 
char *fileName; 

public: 
Word getWord (); // get a word; Invokes operations of Word 
bool isEof (); // Checks for end of file 
void fileOpen ( char * ); 

class Counter { 
private: 
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}; 

int counter; 
public: 

void increment (); 
void display (); 
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class Btree: GENERIC in <ELEMENT_TYPE> { 

}; 

private: 
ELEMENT_TYPE element; 
Btree < ELEMENT_TYPE> *left; 
Btree < ELEMENT_TYPE> *right; 

public: 
void inserte ELEMENT_TYPE ); // to insert an element 
bool lookup( ELEMENT_TYPE ); // to check if an element exists 

main (int arge, char *argv[]) { 
FILE file; 
Word word; 
Counter counter; 
Btree <Word> btree; 

// Reads the file word-by-word until EOF 
// For each word, if word does not exist in btree, add it 
// to btree and increment counter 
// In the end, display the counter 
} 

As we can see, all the dass definitions complete with data members and operations 
and all the major object dedarations (in this case only in main()) are given in the 
design specification. Only the implementation of the methods and mainO are not 
provided. In this example, most of the interaction between the objects is taking 
place through mainO. If objects send messages, then in the design specification 
approach we use, the messages can be mentioned as comments for the methods 
that send them. This design was later converted to C++. The conversion to code 
required only minor additions and modifications to the design. The final code was 
about 240 lines of C++ code (counting noncomment and nonblank lines only). 

Rate of Returns Problem 

Let us consider a slightly larger problem: of determining the rate of returns on 
investments. An investor has made investments in some companies. For each in
vestment, in a file, the name of the company, all the money he has invested (in 
the initial purchase as weIl as in subsequent purchases), and all the money he has 
withdrawn (through sale of shares or dividends) are given, along with the dates 
of each trans action. The current value of the investment is given at the end, along 
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with the date. The goal is to find the rate of return the investor is getting for each 
investment, as weIl as the rate of return for the entire portfolio. In addition, the 
amounts he has invested initiaIly, amounts he has invested subsequently, amounts 
he has withdrawn, and the current value of the portfolio also is to be output. 

This is a practical problem that is frequently needed by investors. The computation 
of rate of return is not straightforward and cannot be easily done through spread 
sheets. Hence, such a software can be of practical use. Besides the basic function
ality given earlier, the software needs to be robust and catch errors that can be 
caught in the input data. 

We start with the analysis of the problem. Initial analysis dearly shows that there are 
a few object dasses of interest-Portfolio, Investment, and Transaction. 
A portfolio consists of many investments, and an investment consists of many 
transactions. Hence, the dass Portf olio is an aggregation of many Investments, 
and an Investment s an aggregation of many Transactions. A transaction can 
be of Wi thdrawal type or Deposit type, resulting in a dass hierarchy, with 
Investment being the superdass and Withdrawal and Deposit subdasses. 

For an object of dass Investment, the major operation we need to perform is 
to find the rate of return. For the dass Portfolio we need to have operations to 
compute rate of return, total initial investment, total withdrawal, and total current 
value of the portfolio. Hence, we need operations for these. The object model 
obtained from analysis of the problem is shown in Figure 6.11. 

Portfolio Investment 

totlnitlnvest 
~ 

name 
totCurValue rv rate 
totWithdrawls 

computeRate ( ) totDeposits 
rate 

computeRate ( ) I computeRest ( ) 
printResults ( ) Transaction 

date 
amount 

~ 
I I 

Deposit Withdrawl 

getamt () getamt () 

FIGURE 6.11. Object model for rate of return problem. 
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FIGURE 6.12. Functional model for the rate of return problem. 

In this problem, as the interaction with the environment is not much, the dynamic 
model is not significant. Hence, we omit the dynamic modeling for this problem. 
A possible functional model is given in Figure 6.12. The object model is then 
enhanced to make sure that each of the processes of the functional model is reflected 
as operations on various objects. As we can see, most of the processes already exist 
as operations. 

Now we have to perform the last two steps of the design methodology, where 
implementation and optimization concerns are used to enhance the object model. 
While considering the implementation of computation of total initial investment, 
computation of overall return rate, overall withdrawals and so on, we notice that 
for all of these, appropriate data from each investment is needed. Hence, to the 
c1ass Investments, appropriate operations need to be added. Further, we note 
that all the computations for total initial investment, total current value, and so on 
are all done together, and each of these is essentially adding values from various 
investments. Hence, we combine them in a single operation in Portfolio and a 
corresponding single operation in Investment. Studying the c1ass hierarchy, we 
observe that the only difference in the two subc1asses Withdrawal and Deposit 
is that in one case the amount is subtracted and in the other it is added. In such 
a situation, the two types can be easily considered a single type by keeping the 
amount as negative for a withdrawal and positive for a deposit. So we remove the 
subc1asses, thereby simplifying the design and implementation. Instead of giving 
the object diagram for the final design, we provide the final design specification: 

class Transaction { 
private: 

int amount; // money amount for the transaction 
int month; // month of the transaction 
int year; // year of the transaction 

public: 
getAmount 0 ; 
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}; 

getMonthO; 
getYearO; 
Transaction(amount, month, year); // sets values 

class Investment { 

}; 

private: 
char *investmentName; // Name of the company 
Transaction *transactArray; // List of transactions 
int noOfTransacts; // Total number of transactions 
float rateOfReturn; // rate of return 

public: 
getTransactDetails(); // Set details of transactions 
computeRate 0 ; 
float getRate(); // Return the rate of the returns 
compute(initVal, totWithdrawls, totCurVal, totDeposits); 

// Returns these values for this investment 

class Portfolio { 

}; 

private: 
Investment *investArray; // List of investments 
int noOfInvestments; // Total number of investments 
int totalInitInvest; 
int totalDeposits; 
int totalCurVal; 
int totalWithdrawl; 
float RateOfReturns; // Overall rate of returns 

public: 
getInvestDetails( char * fname ); // Parse the input file 
computeRate(); // Compute rates of return 
compute(); // Compute other totals 
printResults(); // Print return rates, total values, etc. 

main(argc, argv) 
{ 

} 

Portfolio pf; 

pf.getInvestDetails (argv[1]); 
pf.computeRate (); 
pf. compute 0; 
pf.printResults(); 

The design is self-exp!anatory. This design was later converted in C++ code, and we 
found that only minor implementation details got added during the implementation, 
showing the correctness and completeness of the design. The final size of the 
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program was about 470 lines of C++ code (counting noncomment and nonblank 
lines only). 

We have already seen that the basic paradigm behind OOD is fundamentally differ
ent from the paradigm of function-oriented design. This has brought in a different 
building block and concepts related to this building block. The definition of mod
ularity has also changed for this new building block, and new methodologies have 
been proposed for creating designs using this paradigm. It is, therefore, natural 
to expect that a new set of metrics will be required to evaluate an 00 design. 
However, as the enhanced interest in 00 is a relatively recent phenomenon, only 
a few attempts have been made to propose metrics for object-oriented software 
[AC94, CK94, LH93]. As these metrics proposals are very recent, none of the 
proposed metrics have been widely validated to show how they can be used in 
improving cost or quality, our two major objectives. 

Here we present some metrics that have been proposed for evaluating the com
plexity of an OOD. As design of classes is the central issue in OOD and the major 
output of any OOD methodology is the class definition, these metrics focus on 
evaluating classes. Note that for measuring the size of a system, conventional ap
proaches, which measure the size in LOC or function points, can be used, even if 
00 is used for design. It is the metrics for evaluating the quality or complexity of 
the design that need to be redefined for OOD. The metrics discussed were proposed 
in [CK94], and the discussion is based on this work. The results of an experiment 
described in [BBM95] for validating these metrics and the metrics data presented 
in [CK94] are used to discuss the role of these metrics. 

Weighted Methods per Class (WMC) 

The effort in developing a class will in some sense will be determined by the number 
of methods the class has and the complexity of the methods. Hence, a complexity 
metric that combines the number of methods and the complexity of methods can 
be useful in estimating the overall complexity of the class. The weighted methods 
per class (WMC) metric does precisely this. 

Suppose a class C has methods MI, M2 , ... , Mn defined on it. Let the complexity 
of the method Mi be ci. As a method is like a regular function or procedure, 
any complexity metric that is applicable for functions can be used to define Ci 

(e.g., estimated size, interface complexity, and data flow complexity). The WMC 
is defined as: 

i=n 

WMC= LCi. 
i,.1 
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If the complexity of each method is considered 1, WMC gives the total number of 
methods in the elass. 

Tbe data given in [BBM95, CK94], which is based on evaluation of some existing 
programs, shows that in most cases, the elasses tend to have only a small number of 
methods, implying that most elasses are simple and provide some specific abstrac
tion and operations. Only a few elasses have many methods defined on them. Tbe 
analysis in [BBM95] showed that the WMC metric has a reasonable correlation 
with fault-proneness of a elass. As can be expected, the larger the WMC of a elass 
the better the chances that the elass is fault-prone. 

Depth o/lnheritance Tree (DIT) 

Inheritance is, as we have mentioned, one of the unique features of the object
oriented paradigm. As we have said before, inheritance is one of the main mecha
nisms for reuse in OOD-the deeper a particular elass is in a elass hierarchy, the 
more methods it has available for reuse, thereby providing a larger reuse potential. 
At the same time, as we have mentioned, inheritance increases coupling, which 
makes changing a elass harder. In other words, a elass deep in the hierarchy has a 
lot of methods it can inherit, which makes it difficult to predict its behavior. For 
both these reasons, it is useful to have some metric to quantify inheritance. The 
depth of inheritance tree (DIT) is one such metric. 

Tbe DIT of a elass C in an inheritance hierarchy is the depth from the root elass 
in the inheritance tree. In other words, it is the length of the shortest path from the 
root of the tree to the node representing C or the number of ancestors C has. In 
case of multiple inheritance, the DIT metric is the maximum length from a root to 
C. 

The data in [BBM95, CK94] suggests that most elasses in applications tend to be 
elose to the root, with the maximum DIT metric value (in the applications studied) 
being around 10. Most the elasses have a DIT of 0 (that is, they are the root). 
This seems to suggest that the designers tend to keep the number of abstraction 
levels (reftected by the levels in the inheritance tree) smalI, presumably to aid 
understanding. In other words, designers (of the systems evaluated) might be giving 
up on reusability in favor of comprehensibility. The experiments in [BBM95] show 
that DIT is very significant in predicting defect-proneness of a elass: the higher the 
DIT the higher is the prob ability that the elass is defect-prone. 

Number o/Children (NOC) 

The number of children (NOC) metric value of a elass C is the number of immediate 
subelasses oiC. This metric can be used to evaluate the degree of reuse, as a higher 
NOC number reftects reuse of the definitions in the superelass by a larger number 
of subelasses. It also gives an idea of the direct inftuence of a elass on other 
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elements of a design-the larger the influence of a class, the more important that 
the class is correctly designed. In the empirical observations, it was found that 
classes generally had a small NOC metric value, with a vast majority of dasses 
having no children (i.e., NOC is 0). This suggests that in the systems analyzed, 
inheritance was not used very heavily. However, the data in [BBM95] seems to 
suggest that the larger the NOC, the lower the probability of detecting defects in a 
class. That is, the higher NOC classes are less defect-prone. The reasons for this 
are not very clear or definite. 

Coupling between Classes (CBC) 

As discussed earlier in this chapter and in Chapter 5, coupling between modules of 
a system, in general, reduce modularity and make module modification harder. In 
OOD, as the basic module is a dass, it is desirable to reduce the eoupling between 
dasses. The less eoupling of a class with other classes, the more independent the 
dass, and hence it will be more easily modifiable. Coupling between classes (CBC) 
is ametrie that tries to quantify eoupling that exists between classes. 

The CBC value for a class C is the total number of other classes to which the dass is 
eoupled. Two classes are eonsidered coupled if methods of one class use methods 
or instance variables defined in the other class. In general, whether two dasses 
are coupled can easily be determined by looking at the code and the definitions of 
all the methods of the two classes. However, note that there are indireet forms of 
eoupling (through pointers, etc.) that are hard to identify by evaluating the code. 

The experimental data indicates that most of the dasses are self-eontained and 
have a CBC value of 0, that is, they are not coupled with any other class, including 
superclasses [CK94]. Some types of dasses, for example the ones that deal with 
managing interfaces (called interface objects earlier), generally tend to have higher 
CBC values. The data in [BBM95] found that CBC is significant in predicting the 
fault-proneness of classes, particularly those that deal with user interfaces. 

Response for a Class (RFC) 

Although the CBC för a dass captures the number of other classes to whieh this 
dass is eoupled, it does not quantify the "strength" of intereonneetion. In other 
words, it does not explain the degree of connection of methods of a class with 
other classes. Response for a dass (RFC) tries to quantify this by capturing the 
total number of methods that can be invoked from an object of this class. 

The RFC value for a dass C is the cardinality of the response set for a class. The 
response set of a dass C is the set of all methods that ean be invoked if a message 
is sent to an objeet of this dass. This indudes all the methods of C and of other 
classes to which any method of C sends a message. It is dear that even if the CBC 
value of a dass is 1 (that is, it is eoupled with only one dass), the RFC value may 
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be quite high, indicating that the "volume" of interaction between the two classes 
is very high. It should be clear that it is likely to be harder to test classes that have 
higher RFC values. 

The experimental data found that most classes tend to invoke a small number of 
methods of other classes. Again, classes for interface objects tend to have higher 
RFC values. The data in [BBM95] found that RFC is very significant in predicting 
the fault-proneness of a class-the higher the RFC value the larger the probability 
that the class is defect-prone. 

Lack ofCohesion in Methods (LCOM) 

This last metric in the suite of metrics proposed in [CK94] tries to quantify co
hesion of classes. As we have seen, along with low coupling between modules, 
high cohesion is a highly desirable property for modularity. For classes, cohesion 
captures how closely bound the different methods of the class are. One way to 
quantify this is given by the LCOM metric. 

Two methods of a c1ass C can be considered "cohesive" if the set of instance 
variables of C that they access have some elements in common. That is, if 1I and 
12 are the set of instance variables accessed by the methods MI and M 2 , respectively, 
then MI and M2 are similar if h n lz =I cp. Let Q be the set of all cohesive pairs 
of methods, that is, all (Mi, M j ) such that li and Ij have a non-null intersection. 
Let P be the set of all noncohesive pairs of methods, that is, pairs such that the 
intersection of sets of instance variables they access is null. Then LCOM is defined 
as 

LCOM = IPI-IQI, if IPI > IQI 0 otherwise. 

If there are n methods in a c1ass C, then there are n(n - 1) pairs, and LCOM is the 
number of pairs that are noncohesive minus the number of pairs that are cohesive. 
The larger the number of cohesive methods, the more cohesive the c1ass will be, and 
the LCOM metric will be lower. A high LCOM value may indicate that the methods 
are trying to do different things and operate on different data entities, which may 
suggest that the c1ass supports multiple abstractions, rather than one abstraction. 
If this is validated, the c1ass can be partitioned into different c1asses. The data in 
[BBM95] found little significance of this metric in predicting the fault-proneness 
of a c1ass. 

In [BBM95], the first five metrics, which were found to be significant in predicting 
the fault-proneness of c1asses, were combined to predict the fault-proneness of 
c1asses. The experiments showed that the first five metrics, when combined (in this 
case the coefficients for combination were determined by multivariate analysis of 
the fault and metric data) are very effective in predicting fault-prone c1asses. In their 
experiment, out of a total of 58 faulty c1asses, 48 c1asses were correctly predicted 
as fault-prone. The prediction missed 10 c1asses and predicted 32 extra c1asses as 
fault-prone, although they were not so. 
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6.6 Summary 

In Chapter 5 we studied how a software system can be designed using functional 
abstraction as the basic unit. In this chapter, we looked at how a system can be de
signed using objects as the basic unit. The fundamental difference in this approach 
from functional approaches is that an object encapsulates state and provides some 
predefined operations on that state. That is, state (or data) and operations (i.e., 
functions) are considered together, whereas in the function-oriented approach the 
two are kept separate. 

When using an object-oriented approach, an object is the basic design unit. That 
is, the goal of design is to partition the system into objects rather than partition it 
into functions. For objects, during design, the class for the objects is identified. A 
dass represents the type for the object and defines the possible state space for the 
objects of that class and the operations that can be performed on the objects. An 
object is an instance of a class and has state, behavior, and identity. 

Objects in a system do not exist in isolation but are related to each other. One of the 
goals of design is to identify the relationship between the objects. This relationship 
is generally either an association or an aggregation. An association is a general 
relationship between objects of two classes, implying that objects of a class invoke 
operations on the objects of the other class. Aggregation captures the "whole-part 
of" relationship, implying that the part objects belong to the container object. 

A key property of object-oriented systems is inheritance, that allows the definition 
of a class in terms of some existing classes. The new class inherits features from 
some existing classes, thereby promoting reuse. The class that inherits is called 
the subclass or the derived class, while the parent class is called the superclass 
or the base class. With inheritance, all the features of a base class can be made 
accessible to the derived class. The derived class can add features or rede fine 
them, thereby creating a specialized class. The inheritance relationship results 
in creation of class hierarchies, use of which is fundamental to object-oriented 
approaches. Generally, single inheritance suffices where a derived class has exactly 
one base class. Multiple inheritance is the situation where a class may derive 
features from various. base classes. This form of inheritance brings in some new 
issues. 

Hence, an object-oriented design is one where the final system is represented in 
terms of object classes, relationships between objects, and relationships between 
classes. To ensure that the design is modular, some general properties should be 
satisfied. The main desirable properties are information hiding, low coupling, and 
high cohesion, where coupling and cohesion are defined in terms of classes. Reuse 
through inheritance is another important issue, although how to use it is not straight
forward, as reuse frequently confticts with the desire for low coupling. Some other 
guidelines for design have been given. 
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Exercises 

Although the basic concepts and principles to use for design and the basic means 
to evaluate the quality of a design are sufficient to ensure that proper designs are 
obtained, some help is also needed in how to create a design. Design methodologies 
help here by providing some guidelines of how to create a design. We discussed 
the object modeling technique (OMT) for design. The technique actually focuses 
on modeling. However, the boundary between analysis and design is generally not 
clear in object-oriented approaches. We consider that modeling is the starting step 
for design and have thus represented OMT as a design technique. Two examples 
of creating object-oriented designs using OMT were given. 

Finally, we discussed some metrics that can be used to study the complexity of 
an object-oriented design. We presented one suite of metrics that were proposed, 
along with some data regarding their validation. The metric weighted methods 
per class is defined as the sum of complexities of all the methods and gives some 
idea about how much effort might be needed to develop the class. The depth of 
inheritance tree of a class is defined as the maximum depth in the class hierarchy 
of this class, and can represent the potential of reuse that exists for a class, and 
the degree of coupling between the class and its parent classes. The number of 
children metric is the number of immediate subclasses of a class, and it can be 
used to capture the degree of reuse of a class. Coupling of a class is the number of 
classes whose methods it uses or who use its methods. It can be used to represent 
the lack of modularity of design. The response for a class metric is the number of 
methods that can be invoked by sending a message to this class. It tries to capture 
the strength of interconnection between classes. Finally, the lack of cohesion metric 
represents the number of method pairs whose set of access variables have nothing 
in common minus the number of method pairs that have some common instance 
variable. 

Unlike in previous chapters, we have not discussed verification methods here. The 
reason is that verification methods of reviews and so on discussed in the pre
vious chapters are general techniques that are not specific to function-oriented 
approaches. Hence, the same general techniques can be used for object-oriented 
design. Verification techniques that are specific to object-oriented systems have 
not evolved yet (though work has been done on verification of abstract data 
types). 

1. What is the relationship between abstract data types and classes? 

2. Why are private parts of a superclass generally not made accessible to sub
classes? 

3. In C++,Jriends of a class C can access the private parts of C. For declaring 
a class F a friend of C, where should it be declared-in C or in F? Why? 
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4. What are the different ways in which an object can access another object in a 
language like C++? (00 not consider the access allowed by being a friend.) 

5. Can we have inheritance without polymorphism? Explain. 

6. What are the potential problems that can arise in software maintenance due 
to different types of inheritance? 

7. What is the relationship between OOA, SRS, and OOD? 

8. In the word-counting example, a different functional model was used from 
the one proposed in Chapter 5. U se the model given in Chapter 5 and modify 
the 00 design. 

9. Apply the OMT methodology to create a design for an ATM. 

10. Suppose a simulator for a disk is to be written (for teaching an Operating 
Systems course). Use OMT to design the simulator. 

11. If an association between classes has some attributes of its own, how will you 
implement it? 

12. If we were to use the method described in Chapter 5 to identify error-prone 
and complex modules, which of the metrics will you use and why (you may 
also combine the metrics). 

13. Design an experiment to validate your proposal for predicting error-prone 
modules. Specify data collection and analysis. 

14. Compare the 00 designs and the structured design of the case study to ob
tain some observations for comparing the two design strategies (this can be 
considered a research problem). 
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CASE STUDY 

As with previous chapters, we end this chapter by performing the object-oriented 
design of the case study. First we di!>cuss the application of the design process on 
the case study, i.e., how the design for the case study is created, and then we give 
the specifications of the final design that is created. While discussing the creation 
of design, we provide only the main steps to give an idea of the design activity. 

Object-Oriented Design 

We start the design activity by performing the object modeling. During object 
modeling, the basic focus is on identifying the object c1asses in the problem domain, 
relationships between them, hierarchies, attributes of c1asses, and major services 
that are evident from studying the problem. From the problem specification, given 
in Chapter 3, we can c1early identify the following objects: TimeTable, Course, 
Room, LectureSlot, CToBeSched (course to be scheduled), InputFile_l, and 
InputFile_2. From the problem, it is c1ear that TimeTable, an important object 
in the problem domain, is an aggregation of many TimeTableEntry, each of 
which is a collection of a Course, a Room where the course is scheduled, and a 
LectureSlot in which the course is scheduled. 

On looking at the description of file 1, we find that it contains a list of rooms, courses, 
and time slots that is later used to check the validity of entries in file 2. This results 
in the objects RoomDB, CourseDB, and SlotDB, each of which is an aggregation 
ofmany members ofRoom, Course, and Slot, respectively. Similarly, on looking 
at the description of file 2, we find that it contains a TableOfCToBeSched, which 
is an aggregation of many CToBeSched. 

On studying the problem further and considering the scheduling constraints im
posed by the problem, it is c1ear that for scheduling, the courses have to be divided 
into four different types--depending on whether the course is a UG course or a PG 
course, and whether or not preferences are given. In other words, we can specialize 
CToBeSched to produce four different subc1asses: PGwi thPref, UGwi thPref , 
PGwi thoutPref, and UGwi thoutPref. The c1asses that represent courses with 
preferences will contain a list of preferences, which is a list of LectureSlots. 
This is the only hierarchy that is evident from examining the problem. 

Considering the attributes of the object c1asses, the problem c1early specifies that 
a Room has the attributes roomNo and capa city; a LectureSlot has one major 
attribute, the slot it represents; and a Course has courseName as an attribute. A 
CToBeSched contains a Course and has enrollment as an attribute. 

Considering the services for the object c1asses, we can c1early identify rrom the 
problem specification some services like scheduleAll() on TableOfCToBeSched, 
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which schedules all the courses, printTable() for the TimeTable, setentry() and 
getentry() for a TimeTableEntry, and insert() and lookup() operations for the var
ious lists. The initial object diagram after object modeling is shown in Figure 6.13. 

The system here is not an interactive system; hence dynamic modeling is rather 
straightforward. The normal scenario is that the inputs are given and the outputs are 
produced. There are at least two different normal scenarios possible, depending on 
whether there are any conflicts (requiring conflicts and their reasons to be printed) 
or not (in which case only the timetable is printed). The latter normal scenario does 
not reveal any new operations. However, a natural way to model the first scenario 
is to have an object ConflictTable into which different conflicts for the different 
time slots of different courses are stored, and from where they are later printed. 
Hence, we add this object and model it as an aggregation ofConflictTableEntry, 
with an operation insertEntry() to add a conflict entry in the table and an operation 
printTable() to print the conflicts. Then there are a number of exception scenarios
one for each possible error in the input. In each case, the scenario shows that a proper 
error message is to be output. This requires that operations needed on objects like 
Room, Course and Slot check their formats for correctness. Hence, validation 
operations are added to these objects. 

The functional model for the problem was given in Chapter 5. It shows that from 
file I, roomDB, courseDB, and slotDB need to be formed and the entries for each 
of these have to be obtained from the file and validated. As validation functions 
are already added, this adds the function for producing the three lists, called build_ 
CRS.DBs(). Similarly, the DFD clearly shows that on InputFile_2 a function to 
build the table of courses to be scheduled is needed, leading to the adding of the 
operation buildCtoBeSched(). While building this table, this operation also divides 
them into the four groups of courses, as done in the DFD. The DFD shows that 
an operation to schedule the courses is needed. This operation (scheduleAll() is 
already there. Although the high-level DFD does not show, but a further refine
ment of the bubble for "schedule" shows that bubbles are needed for scheduling 
PG courses with preferences, UG courses with preferences, PG courses without 
preferences, and UG courses without preferences (they are reflected in the struc
ture chart as modules). These bubbles get reflected as schedule() operations on all 
four subclasses-PGwithPref, UGwithPref, PGwihoutPrefs, and UGwith
outPrefs. The DFD also has bubbles for printing the timetable and conflicts. 
These get translated into print operations on TimeTable, TimeTableEntry, 
ConflictTable, and ConflictTableEntry. 

Now we come to the last steps of considering implementation concems. Many new 
issues come up here. First, we decided to have a gencric template class, which can be 
used to implement the various DBs, as all DBs are performing similar functions. 
Hence, we defined a template class List. When considering the main issue of 
scheduling, we notice that scheduling UG courses with preferences, as discussed 
in the Chapter 5, is not straightforward, as the system has to ensure that it does not 
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FIGURE 6.13. Initial object model for the case study. 
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make any PG course without preference "unschedulable." To handle this, we take 
a simple approach of having a data structure that will reserve slots for PG courses 
and will then be used to check for the safety of an assignment while scheduling PG 
courses with preferences. This adds an internal c1ass PGReserve, with operations 
like isAllotmentSafe() (to check if making an allotment for UG course is "safe"), 
Initialize() (to initially "mark" all possible slots where PGwi thoutPref courses 
can be scheduled). The structure is then used to schedule the PG courses without 
preferences after the UG courses with prefences are scheduled, leading to the 
operation getSuitableSchedule(). 

To implement the scheduling operation, we decided to use the dynamic binding 
capability. For each subclass, the schedule() operation that has been defined is 
made to have the same signature, and a corresponding virtual function is added in 
the superclass CtoBeScheduled. With this, when the courses are to be scheduled, 
we can just go over all the courses that need to be scheduled and call the schedule 
operation. Dynamic binding will make sure that the appropriate schedule opera
tion is called, depending on the type of course (i.e., which of the four subc1asses it 
belongs to). All schedule operations will interact with the TimeTable for check
ing the conditions specified in the requirements. Various functions are added on 
TimeTable for this. 

Having considered the scheduling operation, we considered the major operation 
on the files. It becomes clear that to implement these operations, various parsing 
functions are needed on the two files. These functions are then added. As these 
operations are only needed to implement the externally visible operations on the 
class, they are defined as private operations. Considering the public operations on 
these files reinforce the need for insert() and lookup() operations in the different 
DBs, these operations require operations to set the attributes of the independent 
object of which they are an aggregation. Hence, these operations are added. In a 
similar manner, while considering implementation issues various other operations 
on the different object c1asses were revealed. Various other operations are revealed 
when considering implementation of other operations. The final object diagram 
after the design is shown in Figure 6.14. As can be noticed, many of the relationships 
between the classes that were earlier aggregations have now been modeled as links 
rather than as contained objects, largely for efficiency reasons. 

Design Specification 

As we can see, the object diagram, even for this relatively small system, is quite 
complex and not easily manageable. Furthermore, it is not practical to properly 
capture the parameters of the various operations in object diagrams. The types of 
the various attributes is also frequently not shown to keep the diagram compact. 
Similarly, all associations do not get reftected. Hence, for specifying the design 



www.manaraa.com

322 6. Object-Oriented Design 

r-------.. 
RoomDB I Room I 

I 
iA List 

___ ...1 

InputFile1 
['V' 

insert () 
file name ,- lookup () 

r-- sort () 
buildCRSDB ( ) getroom () 

r------ .... 
CourseDB 1 Course I 

I 
iA List 

___ ...1 

IV 

insert () 
lookup () 

r------ .... 
SlotDB I Lecture Siot : 

RoomDB SlotDB p List 
___ ...1 

I I t--
insert ( ) 
lookup () 

InputFile2 

-------- .... 
file name TableofCtoBeSched I CtoBeSched I 

I I 
build C to Be sched ( ) r-- iA List I----- J 

IV 
scheduleAIi ( ) 
insert ( ) 

I TimeTable 
PG Reserve 

CtoBeSched ~ reserve [ 1 [ 1 [ 1 
enrollment initialize ( ) 

virtualSchedule ( ) 
isAliotmentSafe ( ) 

Course set all rib () 
getSuitableSched ( ) 

PGwithPref UGwithPref PGwithoutPref UGwithoutPref 

schedule ( ) schedule () schedule () schedule () 

FIGURE 6.14. Object design für the case study. 
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precisely, the object diagram is translated to a precise specification of the classes, 
and a specification of the main() function to show how objects are created and 
passed between different operations. Here we specify the design shown in Fig
ure 6.14 precisely. As we have been doing, we use C++ structures to specify the 
design. 

// This is the specification for the Object-Oriented Design for the Case Study. 
// It gives all the major classes and most of the major data members and 
// operations for these classes. The major parameters of the various operations 
// are also given, which shows how objects are being made visible. All the 
// major object declarations are also given. Comments are added only where 
// they are needed over and above the discussions above. 

class Course { 
private: 

char *courseID; 
public: 
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}; 

*tellCourseID (); 
isAValidID (); II To test whether courseID is invalid 
bool isAPGCourse (); 
void setAttr (char *); 

class Room { 
private: 

}; 

int roomNo; 
int capacity; 

public: 
Room (int num, int cap); 
bool tellAttrib (int &num, int &cap); 
bool areAttribValid (); II Atrribute validation 

class LectureSlot { 

}; 

private: 
char 

public: 
char 
bool 
void 

*slotID; 

*tellSlotID 0; 
isAValidSlot (); 
setAttr (char *id); 

/1 Generic List Abstraction 
template <class Element_t> 
class List { 

}; 

private: 
Element_t listElem[ MAX_ELEMENTS ]; 
int currentPtr; 
int stateMarker; 

public: 
bool isListEmpty (); 
bool insertElement (Element_t element); 
1/ Next two operations needed to traverse the list 
void reset (); II Reset the CurrentPtr, if you want to scan from start 
bool getNextElement (Element_t &element); 
/1 In tables we will represent a room, course, etc. as an index in its OB. 
II Operations for random access in the list are therefore needed. 
bool getlthElement (int, Element_t &); 
bool setlthElement (int, Element_t); 

/1 Abstraction for room database 
class RoomDB { 

private: 
List<Room *> roomDB; 
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public: 
bool insert (Room *); 
void sortRooms (); // Sort on capacity - makes looking for a room easier 
bool getSuitableRoom (enrol); // get smallest room that fits 

// Abstraction for course database 
class CourseDB { 

}; 

private: 
List<Course *> courseDB; 

public: 
bool insert (Course *); 
bool lookUp (int &, Course &); // Search the DB and return the index 

// Abstraction for class database 
class SlotDB { 

}; 

private: 
List<LectureSlot *> slotDB; 

public: 
bool insert (LectureSlot *); 
bool lookUp (int &, LectureSlot &); // Return index of the lecture slot 

// Object for File 1 
class InputFile_l { 

}; 

private: 
ifstream inFile; 
char *fileName; 
// Parsing functions 
bool semicolonExists (char *); // TRUE if semicolon is present in the line 
bool buildRoomDB (RoomDB &); // Parse file until roomDB is built 
bool build_CS_DB (CourseDB &, SlotDB &); // Build course and slot DBs 
char skipOverWhiteSpaces (); 
void getNextRoomEntry (inT. &, int &, int &); 
void getNextToken (int &, char *&); 

public: 
build_CRS_DBs (char *fName,CourseDB &cDB, RoomDB &rDB, SlotDB &sDB); 

// A course that has to be scheduled - from file 2. Forms the base class 
class CtoBeSched { 

protected: 
int enrollment; 
int coursePtr; 

public: 
virtual void getScheduled (TimeTable *&, RoomDB *, SlotDB *, 
ConflictTable *&, TableOfCtoBeSched *&, PGReserve *&); 
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}; 

int setAttr (int enrollment, int course); 
bool tellAttr (int &cptr, int &enroll); 

class PGwithPref: public CtoBeSched { 
private: 

}; 

List<int> prefList; // List of preferences 
void getScheduled (TimeTable *&, RoomDB *, SlotDB *, 
ConflictTable *&, TableOfCtoBeSched *&, PGReserve *&); 

public: 
bool insertPref (int); // into prefList 

~lass UGwithPref: public CtoBeSched { 
private: 

}; 

List<int> prefList; // List of preferences 
public: 

void getScheduled (TimeTable *&, RoomDB *, SlotDB *, 
ConflictTable *&, TableOfCtoBeSched *&, PGReserve *&); 
bool insertPref (int); // into prefList 

class PGwithoutPref: public CtoBeSched { 
public: 

}; 

void getScheduled (TimeTable *&, RoomDB *, SlotDB *, 
ConflictTable *&, TableOfCtoBeSched *&, PGReserve *&); 

class UGwithoutPref: public CtoBeSched { 
public: 

}; 

void getScheduled (TimeTable *&, RoomDB *, SlotDB *, 
ConflictTable *&, TableOfCtoBeSched *&, PGReserve *&); 

class PGReserve { 
private: 

}; 

int reserve[ MAX_COURSES] [MAX_SLOTS] [MAX_ROOMS]; 

public: 
void initialize (List<CtoBeSched *> *,SlotDB *,RoomDB *,TimeTable *); 
bool isAllotmentSafe (List<CtoBeSched *> *, int room, int slot); 
// given the PG courses without prefs, is this allotment safe? 
bool getSuitableSchedule (TimeTable *&,List<CtoBeSched *> *,int cPtr, int rNum, 
int &slot, int &room,bool &); // To schedule PGwithoutPref courses 

class TableOfCtoBeSched { // Table of courses to be scheduled 
private: 
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List<CtoBeSched *> table [NUM_DF_CATEGDRIES]; 
PGReserve *pgReserve; // Reservation chart for PGsansP 

public: 
bool scheduleAll (TimeTable *&, SlotDB *,RoomDB *, ConflictTable *&); 
// Sends getScheduled message to all courses 
bool insert (int, CtoBeSched *); 

}; 

class TimeTableEntry { // Dne entry in the timetable 
private: 

}; 

int coursePtr; // Index into Course DB 
bool booked; // Some other course booked it? 

public: 
void setAttr (int cptr, bool mark); 
bool isThisBooked (); 
int tellWho 0; 
void printEntry (CourseDB *cDB); 

class TimeTable { 
private: 

}; 

int PGDccupied[ MAX_SLDTS ]; 
TimeTableEntry table[ MAX_RDDMS ] [ MAX_SLDTS ]; 

public: 
bool bookASlot (int, int, int); // Set table[i] [j] ptr; 
bool isColumnEmpty (int colIndex); 
bool setPGDccupied (int slotIndex,int coursePtr); 
int PGwho (int coursePtr); 
int who (int roomPtr, int slotPtr); 
void printTimeTable (CourseDB *, RoomDB *, SlotDB *); 
bool isAlreadyDccupied (int roomPtr, int slotPtr); 
huntForSuitableRoom (int, int, RoomDB *, int &); 

class ConflictTable_Entry { 

}; 

private: 
int errorCode; 
int coursePtr; 
int conflictCourse; 
int preference; 
int roomPtr; 

public: 
void setAttr (int E, int c,int cC,int p,int r); 
void printAttr (CourseDB *,SlotDB *,RoomDB *); 

class ConflictTable { 
private: 
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}; 

List< ConflietTable_Entry *> table; 
publie: 

bool insertEntry (int, int, int, int, int); 
void printTable (CourseDB *,SlotDB *,RoomDB *); 

elass InputFile_2 { 

}; 

private: 
ehar *fileName; 
// Parsing funetions 
ehar skipOverWhiteSpaees (); 
ehar *getNextToken (); 
ehar *getNextPref (); 
bool prefGiven (); 

publie: 
bool buildCtoBeSehed (ehar *fName, TableOfCtoBeSehed &, CourseDB *, SlotDB *); 

main (int arge, ehar *argv[]) { 
InputFile_1 in1; 

} 

InputFile_2 in2; 
TableOfCtoBeSehed tbl; 
CourseDB eDB; 
RoomDB rDB; 
SlotDB sDB; 
TimeTable *timeTable; 
ConflietTable *eonflietTable; 

// From main, first the databases are built by in1.build_CRS_DBs() 
// Then table from file 2 is built by in2.buildCtoBeSehed() 
// Rooms are then sorted, and seheduling is done by tbl.seheduleAll() 
// Timetable and eonfliet table are then printed. 



www.manaraa.com

7 __________________________________ _ 

Detailed Design 

In previous chapters we discussed two different approaches for system design. In 
system design we concentrate on the modules in a system and how they interact 
with each other. The specifications of a module are often communicated by its 
name, the English phrase with which we label the module. In previous exarnples 
we have used words like "sort" and "assign" to communicate the functionality of the 
modules. The specifications of a module are conveyed by our understanding of the 
phrases that label the modules. In a design document, a more detailed specification 
is given by explaining in naturallanguage what a module is supposed to do. 

These nonformal methods of specification can lead to problems during coding, 
particularly if the coder is a different person from the designer, wh ich is often 
the case. The reason is that the correct implementation of the module depends on 
the coder interpreting the nonformal specifications of the modules in precisely the 
manner the designer intended. Even if the designer and the coder are the same 
person, problems can occur, as the design can take a long time, and the designer 
may not remember precisely what the module is supposed to do. 

The first step before the detailed design or code for a module can be developed 
is that the specification of the module be given precisely. On ce the module is 
precisely specified, the intemallogic for the module that will implement the given 
specifications can be decided. 

In the next section we will discuss some formal methods for specifying modules. 
We consider specification methods for modules supporting functional abstraction 
and modules supporting data abstraction. Then we discuss methods for specifying 
the detailed design of a module.1t should, however, be emphasized that in practice, 
semiformal specifications of the type we have used for the case study are the ones 
that are most widely used. 
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7.1 Module Specifications 

Informal means of "specifying" what a module is supposed to do are likely to 
lead to different interpretations of the specifications, which can lead to incorrect 
implementations. Formal methods of specification can ensure that the specifications 
are precise and not open to multiple interpretations. 

As discussed in the previous chapters, two types of abstraction are commonly used: 
functional abstraction and data abstraction. This means that if a system design 
is modular and modules support a well-defined abstraction, most modules will 
support either functional or data abstraction. In this section we consider a formal 
specification method for both types of modules. 

Let us first discuss the desirable properties that module specifications should have. 
First, the specifications should be complete. That is, the given specifications should 
specify the entire behavior of the module that only correct implementations sat
isfy the specifications. A related property is that the specifications should be un
ambiguous. Formal specifications usually are unambiguous while specifications 
written in naturallanguages are likely to be ambiguous. The specifications should 
be easily understandable and the specification language should be such that spec
ifications can be easily written. This is required for practical reasons and is a 
very desired property if the specification method is to be used in actual soft
ware development. It is lack of this feature that makes formal specifications less 
widely used. Formal specifications are often hard to understand and equally hard 
to write. 

An important property of specifications is that they should be implementation
independent. Specifications should be given in an abstract manner independent of 
the eventual implementation of the module and should not specify or suggest any 
particular method for implementation of the module. This property specifically 
rules out algorithmic methods for specification, The specification should only give 
the extern al behavior; the internal details of the module should be decided later by 
the programmer. 

Independence of implementation is also a property on which there is no universal 
agreement. One line of thought is that one can never provide specifications that do 
not suggest anything about the internals of the module. In this case, it is argued, it 
is best to provide operational specifications, where the specifications are given in a 
very high-level specification language. The specifications in this case are essentially 
implementation of the module in this high level language. If an interpreter or 
compiler is available for the specification language, then the added advantage of 
operational specifications is that a prototype is available once the specifications are 
provided. This prototype can be used for either testing actual implementations or 
building a prototype of the entire system. 
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7.1.1 Specifying Functional Modules 

The most abstract view of a functional module is to treat it as a black box that takes 
in some inputs and produces some outputs such that the outputs have a specified 
relationship with the inputs. Most modules are designed to operate only on inputs 
that satisfy some constraints. The constraints may be on the type of input and the 
range of the inputs. For example, a function that finds the square root of a number 
may be designed to operate only on the real numbers. In addition, it may require 
that inputs are positive real numbers. 

If the inputs satisfy the desired constraints, the goal of a module is to produce 
outputs that satisfy some constraints that are often related to the inputs. 

Hence, to specify the external behavior of a module supporting functional abstrac
tion, one needs to specify the inputs on which the module operates, the outputs 
produced by the module, and the relationship of the outputs to the inputs. 

One method for specifying modules was proposed by Hoare [Hoa69], based on pre
and post-conditions. The specification method was chosen more for verification of 
modules (i.e., verifying that a given implementation of a module satisfies its speci
fications) rather than specifying modules during design. In this method constraints 
on the input of a module were specified by a logical assertion on the input state 
called pre-condition. The output was specified as a logical assertion on the output 
state called post-condition. The post-condition is specified as an assertion on the 
final state of the module. No relations hip is explicitly specified between the input 
and the output. Validity of the output is specified entirely by the post-condition 
assertion. We will discuss this method in more detail in a later chapter when we 
discuss verification of programs. As an example, consider a module sort to be 
written to sort a list L of integers in ascending order. The pre- and post-condition 
of this module are: 

Pre-condition: non-null L 
Post-condition: forall i, 1 :s i < size(L), L[i] :s L[i + 1] 

The specification states that if the input state for the module sort is non-null L, 
the output state should be such that the elements of L are in increasing order. 

These specificationsare not complete. They only state that the final state of the list 
L (which is the ,output of the module sort) should be such that the elements are 
in ascending order. It does not state anything about the implicit requirement of the 
sort module that the final state of the list L should contain the same elements as 
the initial list. In fact, this specification can be satisfied by a module that takes the 
first element of the list Land copies it on all the other elements. 

A variation of this approach is to specify assertions for the input and output states, 
but the assertions for the output can be stated as a relation between the final state 
and the initial state. In such methods, while specifying the condition on the output, 
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the final state of an entity Eis referred to as Eprime (the initial state is referred 
by E itself). Using this notation, a possible specification of the module sort is 

sort (L: list of integers) 
input: non-null L 
output: forall i, 1 :s i < size(L') 

L'[i] :s L'[i+l] and 
L' = permutation(L) 

This specification, besides the ordering requirement, states that elements of the 
final list are a permutation of elements of the initial list. This specification will be 
complete if the module is to be designed only to operate on non-null lists. Often 
the modules check if the input satisfies the desired constraints. If the constraints 
are not satisfied, it is treated as an exception condition, and some special code 
is executed. If we want the module to handle exceptions, we need to specify the 
exceptional behavior of the modules. Some work has been done in specifying and 
verifying modules with exceptions, and the reader is referred to [Cri84, BJ89] for 
more information. 

7.1.2 Specifying Classes 

Data abstraction is considered one of the most important language concepts of 
recent times. It comprises a group of related operations that act on a particular 
dass of objects, with the constraint that the behavior of the objects can only be 
observed by applying the operations. Data abstractions, when supported as types 
in a language, are also called abstract data types (ADTs). Data abstraction is ex
tremely useful for hiding information and providing high-level abstraction. Many 
languages, inc1uding Simula, CLU, and Ada, support abstract data types. As men
tioned in Chapter 6, a dass without inheritance is an ADT, and an object of such 
a c1ass is essentially an instance of an ADT. Here we discuss the specification of 
c1asses without inheritance, that is, abstract data types. 

Various specification techniques have evolved for specifying abstract data types. 
Here we will describe the axiomatic specification technique [GH78]. In the ax
iomatic specification method the operations are not directly specified by specify
ing the behavior of each operation independently. Instead, axioms are used that 
specify the behavior of different interaction of operations. The interactions for 
which axioms are chosen are such that they completely describe the behavior of 
the operations. 

Before we proceed, let us demonstrate the axiomatic method by writing specifica
tions for a stack of integers. We define a stack that has four operations: 

• Create: to create a new stack. 

• Push: to push an element on a stack. 
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1. stack [ integer] 
declare 

2. create ( ) -+ stack; 
3. push ( stack, integer)-+ stack; 
4. pop ( stack) -+ stack ; 
5. top ( stack) -+ integer U undefined ; 

var 
6. s : stack; i : integer; 

forall 
7. top ( create ( ) ) = undefined ; 
8. top ( push ( s , i » = i ; 
9. pop ( create ( ) ) = create ( ) ; 

10. pop ( push ( s , i ) ) = s ; 
end 

FIGURE 7.1. Axiomatic specifications of a stack. 

• Pop: to pop the top element from the stack. 

• Top: returns the element on top of the stack. 

If we were to just specify the stack in this manner, to convey the semantics of the 
operations, we have to rely on the meaning of words like Stack, Push, and Pop. 
Based on our understanding of these words, we may derive proper semantics of 
operations in this simple case. However, for absolutely new data types, this assump
tion may not hold. Axiomatic specifications remove this reliance on the meaning 
of words and intuition by precisely specifying the data type. The specifications of 
the stack are shown in Figure 7.1. 

For axiomatic specifications to be used properly, we must agree on some language 
to be used for specifications. Here we present the specification language that we will 
use in this chapter, which has two major components: syntactic specifications and 
semantic specifications. The syntactic specifications provide the syntactic and type 
checking information such as variable names, variable types, and the domain and 
range of operations. Semantic specifications define the meaning of the operations 
by stating, in the fomi ofaxioms, relationships of the operations among each other. 

The syntactic part of the specifications has three components: the he ader, operation 
declarations, and variable declaration. The header specifies the name of the data 
type and any parameters it may have. All the operations of the ADT must have 
a declaration in the operation declaration part. For an operation, the declaration 
has to specify the type of the input parameters and the result. The type can be the 
ADT itself; any of the type parameters of the ADT, or a standard type like Boolean 
or integer. In the variable declaration part, variables can be declared only of the 
types that have appeared before. The variables are declared for use in semantic 
specifications, 
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The semantics ofthe operations in the axiomatic specification technique are speci
fied in the semantic part by enumerating axioms for operations. Axioms attach 
meaning to operations by specifying the relationship between operations. The 
following constructs are allowed forwriting the axioms: 

• Free variables 

• If-then-else 

• Recursion 

• Boolean expressions. 

Once we have constructed the specifications for a data type, we have to consider if 
a sufficient number of consistent axioms have been provided. Consistency means 
that partial semantics of different operations, specified by the axioms, is not con
tradictory. Determining consistency is theoretically an undecidable problem, but 
in practice it is often relatively simple to demonstrate the consistency of a set of 
axioms. One method of demonstrating consistency is to implement the data type. 
If the type can be implemented, its consistency is established. 

Determining the completeness of a given set ofaxioms is usually a more difficult 
problem than determining consistency. For completeness we use the notion of suf
ficient completeness [GH78, Gut80]. To define sufficient completeness, we divide 
the set of operations defined on the ADT into two sets, S and O. The set S contains 
the operations whose range is ADT, returning a value of the type being specified. 
The set 0 contains operations that map values of the type ADT into other types, 
returning values of types other than the type being specified. The operations in 
o are often called behavior operations, while we sometimes use the term nonbe
havior operations to mean operations in the set S. In the example of the stack, the 
operation "top" is the only behavior operation. 

Behavior operations provide a window into the state of instances of the abstract 
type. Behavior functions allow the actual behavior of an instance to be viewed 
from the outside. In principle, an abstract type can be defined without having 
any behavior operations, but for such types there is no way of distinguishing one 
instance of the abstract type from another, as there are no operations provided to 
observe the behavior gf an instance of the abstract type from the outside. The ability 
to distinguish two instances depends solelyon the result of behavior operations 
performed on the instances. Instances of the abstract type, on the other hand, are 
created and manipulated solely by the nonbehavior operations. 

A set ofaxioms specifying an abstract type is considered sufficiently complete if 
and only if for every possible instance (such as an instance that can be created by 
some sequence of nonbehavior operations) of the abstract type, the result of all the 
behavior operations of the type is defined by the specifications [GH78]. This notion 
of sufficient completeness is from the extern al point of view; external behavior of 
the ADT should always be specified. The specifications for the type stack given 
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earlier can be shown to be sufficiently compIete. However, the general problem of 
determining if a set ofaxioms is sufficiently complete is undecidable. 

The most obvious reason for incompleteness is that some axioms are not provided. 
Incompletion results when some of the axioms required to specify a type are omit
ted. Even though completeness is defined from the point of view of externally 
observable behavior of the type, incompleteness will result even if the missing 
axioms are for nonbehavior operations, because this could lead to construction of 
an instance on which the result of some behavior operation is not defined. 

A heuristic for generating complete specifications was provided by Guttag. For 
this we further divide the set Sinto two categories--constructors and extension 
operators. Constructors are those operations with which we can construct any 
instance of the ADT. In other words, any instance of a data type, regardless of 
what sequence of operations created it, can be created by a sequence of operations 
consisting solely of constructors. Extension operators are those operations that 
are not constructors but that return a value of type ADT. In the case of the stack 
the operations "create" and "push" are constructors, while "pop" is an extension 
operator. Consider the following instance of the type stack: 

push(pop(push(push(createO, 1),2)),3) 

Even though this instance is created by three different operations, the instance can 
be created by the following expression of constructors: 

push(push(createO, 1),3) 

Identifying constructors cannot be done mechanically. It depends on the data type, 
and we have to use our judgment to separate constructors from the extension 
operators. But, for most cases, identifying constructors is relatively easy. 

With constructors, another definition can be given for sufficient completeness. 
When a set ofaxioms is complete, any expression of the abstract type is reduced to 
an expression consisting solely of constructors by the application of the axioms. In 
other words, ifaxioms are treated as rewrite rules, then in an expression a pattern 
matching the left-hand side of an axiom can be replaced by the expression on the 
right-hand side of the axiom. The set ofaxioms is complete if by rewriting the 
expression using the. axioms, we eventually reach an irreducible expression that 
consists solely of constructors. 

On ce the constructors are identified, a sufficiently complete set of <L'tioms can 
be generated. Consider an expression consisting of a nonconstructor applied to a 
constructor. Form all such different expressions. These expressions form the left 
side of the axioms. Such a set ofaxioms is guaranteed to be sufficiently complete. 
So, for a data type with n operations, if there are m constructors, the total number 
ofaxioms generated by this will be m * (n - m). Thus, in the case of the stack we 
have 2 * 2 = 4 axioms, and the left sides are formed by combining "top" and "pop" 
with the two constructors "create" and "push." 
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Note that this method does not specify what the right side of the axiom should be. 
We have to determine that ourselves. If we do not properly state the right side for 
each case, we may end up with a set ofaxioms that is inconsistent or that represents 
a data type different from what we wanted to specify. Clearly, no rules can be given 
to specify the right side, as it depends on the type being specified. 

Now let us consider a queue. We define the following operations on the type queue: 

• newq: creates a new queue. 

• addq: adds a new element at the end of the queue. 

• deleteq: deletes the element at the front of the queue. 

• emptyq: tells if the queue is empty or not. 

• appendq: appends another queue at the end of a queue. 

• frontq: returns the item at the front of the queue. 

The constructors are "newq," and "addq." Any instance, whether created by using 
"appendq," or "deleteq," Can be created by these two operations. Using the preced
ing technique, we will have 4 * 2 = 8 axioms to obtain a sufficiently complete set 
ofaxioms. For each of these eight expressions, we have to specify the right side 
correctly so that they represent the type queue. The axioms are shown in Figure 7.2. 

Line 1 of the specification is the he ader of the ADT that states that this is the 
specification of a queue of type Items. Lines 2 through 7 specify the different 
operations defined on the type queue and their domain and range.1t should be noted 
that this type is parameterized with type Item. Lines 8 and 9 declare some variables 
to be used in the axioms. Lines 1 through 9 form the syntactic specifications. Lines 
10 and 11 specify the behavior of the function "emptyq"; if "emptyq" is performed 
on a "newq," it returns true, and if its performed on a queue to which an element has 
been added, it returns false. Lines 12 and 13 specify the behavior of the operation 
"frontq"; lines 14 and 15, the behavior of "deleteq"; and lines 16 and 17, the 
behavior of "appendq." The set ofaxioms given here can be shown to be complete. 
It might be pointed out that systems exist that can synthesize implementation 
from the axiomatic specifications [JaI87] or automatically test the completeness of 
axioms [JC88, JaI89a]. 

7.2 Detailed Design 

We have seen some techniques for system design. Most design techniques, like 
structured design, identify the major modules and the major data ftow among them. 
The methods used to specify the system design typically focus on the external 
interfaces cif the modules and cannot be extended to specify the internals. Process 
design language (PDL) is one way in which the design Can be communicated 
precisely and completely to whatever degree of detail desired by the designer. That 
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1. queue [ Item ] 
decIare 

2. newq ( ) -+ queue; 
3. addq ( queue, Item ) -+ queue; 
4. deleteq ( queue) -+ queue ; 
5. emptyq ( queue) -+ boolean ; 
6. appendq ( queue, queue) -+ queue; 
7. frontq ( queue) -+ Item U undefined ; 

var 
8. q , r : queue; 
9. i: Item; 

forall 
10. emptyq ( newq ( ) ) = true ; 
11. emptyq ( addq ( q , i ) ) = false ; 
12. frontq (newq () ) = undefined ; 
13. frontq ( addq (q , i ) ) = if emptyq (q) then i 

else frontq ( q ) ; 
14. deleteq (newq () ) = newq () ; 
15. deleteq (addq (q , i ) ) = if emptyq ( q) then newq ( ) 

else addq ( deleteq ( q ) , i ) ; 
16. appendq (q ,newq ( ) ) = q ; 
17. appendq ( r , addq ( q , i ) ) = addq ( appendq ( r , q ) , i ) ; 

end 

FIGURE 7.2. Specifications of the type queue. 

is, it can be used to specify the system design and to extend it to incIude the logic 
design. PDL is particularly useful when using top-down refinement techniques to 
design a system or module. 

7.2.1 POL 

One way to communicate a design is to specify it in a naturallanguage, like English. 
This approach often leads to misunderstanding, and such imprecise communication 
is not particularly useful when converting the design into code. The other extreme 
is to communicate it precisely in a formallanguage, like a programming language. 
Such representations often have great detail, which is necessary for implementation 
but not important for communicating the design. These details are often a hindrance 
to easy communication of the basic design. Ideally we would like to express the 
design in a language that is as precise and unambiguous as possible without having 
too much detail and that can be easily converted into an implementation. This is 
what PDL attempts to do. 
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minmax(infile) 

ARRAYa 

DO UNTIL end of input 
READ an item into a 

ENDDO 
max, min := first item of a 
DO FOR each item in a 

IF max < item THEN set max to item 
IF min > item THEN set min to item 

ENDDO 
END 

FIGURE 7.3. PDL description of the minmax 
program. 

PDL has an overall outer syntax of a structured programming language and has 
a vocabulary of a natural language (English in our case). It can be thought of as 
"structured English". Because the structure of a design expressed in PDL is formal, 
using the formal language constructs, some amount of automated processing can 
be done on such designs. As an example, consider the problem of finding the 
minimum and maximum of a set of numbers in a file and outputting these numbers 
in PDL as shown in Figure 7.3. 

Notice that in the PDL program we have the entire logic of the procedure, but 
little about the details of implementation in a particular language. To implement 
this in a language, each of the PDL statements will have to be converted into 
programming language statements. Let us consider another example. Text is given 
in a file with one blank between two words. It is to be formatted into lines of 80 
characters, except the last line. A word is not to be divided into two lines, and the 
numbers of blanks needed to fill the line are added at the end, with no more than 
two blanks between words. The PDL program is shown in Figure 7.4. Notice the 
use of procedure to express the design. 

With PDL, a design can be expressed in whatever level of detail that is suitable for 
the problem. One way to use PDL is to first generate a rough outline of the entire 
solution at a given level of detail. When the design is agreed on at this level, more 
detail can be added. This allows a successive refinement approach, and can save 
considerable cost by detecting the design errors early during the design phase. 
It also aids design verification by phases, which helps in developing error-free 
designs. The structured outer syntax of PDL also encourages the use of structured 
language constructs while implementing the design. 

The basic constructs of PDL are similar to those of a structured language. The first 
is the IF construct. It is sirnilar to the if-then-else construct of Pascal. However, 
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DO UNTIL (#chars in buf 2: 80 & word boundary is reached) 
OR (end-of-text reached) 

read chars in buf 
ENDDO 
IF #chars > 80 THEN 

remove last word from buf 
PRINT-WITH-FILL (buf) 
set buf to last word ELSEIF #chars = 80 THEN 
print (Buf) 
set buf to empty 

ELSE EXIT the loop 
ENDDO 

PROCEDURE PRINT-WITH-FILL (buf) 

Determine #Words and #character in buf 
#of blanks needed = 80 - #character 
DO FOR each word in the buf 

print (word) 
if #printed words 2: (#Word - #of blanks needed) THEN 

print (two blanks) 
ELSE print (single blank) 

ENDDO 

FIGURE 7.4. PDL description of text-formatter. 

the conditions and the statements to be executed need not be stated in a formal 
language. For a general selection, there is a CASE statement. Some examples of 
CASE statements are: 

CASE OF trans action type 
CASE OF operator type 

The DO construct is used to indicate repetition. The construct is indicated by: 

DO iteration criteria 
one or more statements 

ENDDO 

The iteration criteria can be chosen to suit the problem, and unlike a formal pro
gramming language, they need not be formally stated. Examples of valid uses 
are: 

DO WHILE there are characters in input file 
DO UNTIL the end of file is reached 
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DO FOR each item in the list EXCEPT when item is zero 

A variety of data structures can be defined and used in PDL such as lists, tables, 
scalar, and integers. Variations of PDL, along with some automated support, are 
used extensively for communicating designs. 

7.2.2 Logic/Algorithm Design 

The basic goal in detailed design is to specify the logic for the different modules 
that have been specified during system design. Specifying the logic will require 
developing an algorithm that will implement the given specifications. Here we 
consider some principles for designing algorithms or logic that will implement the 
given specifications. 

The term algorithm is quite general and is applicable to a wide variety of areas. 
Essentially, an algorithm is a sequence of steps that need to be performed to solve 
a given problem. The problem need not be a programming problem. We can, for 
example, design algorithms for such activities as cooking dishes (the recipes are 
nothing but algorithms) and building a table. In the software development life 
cyde we are only interested in algorithms related to software. For this, we define 
an algorithm to be an unambiguous procedure for solving a problem [GH77]. A 
procedure is a finite sequence of well-defined steps or operations, each of which 
requires a finite amount of memory and time to complete. In this definition we 
assume that termination is an essential property of procedures. From now on we 
will use procedures, algorithms, and logic interchangeably. 

There are a number ofsteps that one has to perform while developing an algorithm 
[GH77]. The starting step in the design of algorithms is statement ofthe problem. 
The problem for which an algorithm is being devised has to be precisely and 
dearly stated and properly understood by the person responsible for designing 
the algorithm. For detailed design, the problem statement comes from the system 
design. That is, the problem statement is already available when the detailed design 
of a module commences. The next step is development of a mathematical model 
for the problem. In modeling, one has to select the mathematical structures that are 
best suited for the problem. It can help to look at other similar problems that have 
been solved. In most cases, models are constructed by taking models of similar 
problems and modifying the model to suit the current problem. The next step is the 
design of the algorithm. During this step the data structure and program structure 
are decided. Once the algorithm is designed, its correctness should be verified. 

No dear procedure can be given for designing algorithms. Having such a proce
dure amounts to automating the problem of algorithm development, which is not 
possible with the current methods. However, some heuristics or methods can be 
provided t6 help the designer design algorithms for modules. The most common 
method for designing algorithms or the logic für a module is to use the stepwise 
refinement technique [Wir7l]. 
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Tbe stepwise refinement technique breaks the logic design problem into aseries 
of steps, so that the development can be done gradually. The process starts by con
verting the specifications of the module into an abstract description of an algorithm 
containing a few abstract statements. In each step, one or several statements in the 
algorithm developed so far are decomposed into more detailed instructions. The 
successive refinement terminates when all instructions are sufficiently precise that 
they can easily be converted into programming language statements. During re
finement, both data and instructions have to be refined. A guideline for refinement 
is that in each step the amount of decomposition should be such that it can be easily 
handled and that represents one or two design decisions. 

The stepwise refinement technique is a top-down method for developing detailed 
design. We have already seen top-down methods for developing system designs. To 
perform stepwise refinement, a language is needed to express the logic of a module 
at different levels of detail, starting from the specifications of the module. We need 
a language that has enough flexibility to accommodate different levels of precision. 
Programming languages typically are not suitable as they do not have this flexibility. 
For this purpose, PDL is very suitable. Its formal outer syntax ensures that the 
design being developed is a "computer algorithm" whose statements can later be 
converted into statements of a programming language. Its flexible naturallanguage
based inner syntax allows statements to be expressed with varying degrees of 
precision and aids the refinement process. 

An Example: Let us again consider the problem of counting different words in a 
text file. Suppose that in the high-level structure chart of a large text processing 
system, a COUNT module is specified whose job is to determine the count of 
different words. During detailed design we have to determine the logic of this 
module so that the specifications are met. We will use the stepwise refinement 
method for this. For specification we will use PDL, adapted to C-style syntax. A 
simple strategy for the first step is shown in Figure 7.5. 

This strategy is simple and easy to understand. This is the strategy that we proposed 
in the data flow graph earlier. The "primitive" operations used in this strategy 

int count (file) 
FILE file; 
word_list wl; 
{ 

} 

read file into wl 
sort (wl); 
count = different_words (wl); 
printf (count); 

FIGURE 7.5. Strategy for the first step in 
stepwise refinement. 
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read_from_file (file, wl) 
FILE file; 
word_list wl; 
{ 

} 

initialize wl to empty; 
while not end-of-file { 
get_a_word from file 
add word to wl 

FIGURE 7.6. Refinement of the reading operation. 

are very high-level and need to be further refined. Specifically, there are three 
operations that need refinement. These are (1) read file into the word list, whose 
purpose is to read all the words from the file and create a word list, (2) sort(wl), 
which sorts the word list in ascending order, and (3) count different words from 
a sorted word list. So far, only one data structure is defined: the word list. As 
refinement proceeds, more data structures might be needed. 

In the next refinement step, we should select one of the three operations to be 
refined and further elaborate it. In this step we will re fine the reading procedure. 
One strategy of implementing the read module is to read words and add them to 
the word list. This is shown in Figure 7.6. 

This is a straightforward strategy, simple enough to be easily handled in one refine
ment step. Another strategy could be to read large amounts of data from the file in 
a buffer and form the word list from this buffer. This might lead to a more efficient 
implementation. For the next refinement step we select the counting function. A 
strategy for implementing this function is shown in Figure 7.7. 

Similarly, we can refine the sort function. Once these refinements are done, we 
have a design that is sufficiently detailed and needs no further refinement. For 
more complex problems many successive refinements might be needed for a single 
operation. Design for such problems can proceed in two ways--depth first or 
breadth first. In the depth first approach, when an operation is being refined, its 
refinement is completely finished (which might require many levels of refinement) 
before refinement of other operations begins. In the breadth first approach, all 
operations needing refinement are refined once. Then all the operations specified 
in this refinement are refined once. This is done until no refinement is needed. A 
combination of the two approaches could also be followed. 

It is worth comparing the structure of the PDL pro grams produced by this method as 
compared to the structure produced using the structured design methodology. The 
two structures are not the same. The basic difference is that in stepwise refinement, 
the function sort is subordinate to the main module, while in the design produced 
by using stru~tured design methodology, it is a subordinate module to the input 
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int different_words (wl) 
word_list wl; 
{ 

} 

word last, eur; 
int ent; 

last = first word in wl 
ent = 1; 
while not end of list { 

eur = next word from wl 
if (eur <> last) { 

ent = ent + 1; 
last = eur; 

} 

} 

return (ent) 

FIGURE 7.7. Refinement of the function differenLwords. 

module. This is not just a minor point; it points to a difference in approaches. In 
stepwise refinement, in each refinement step we specify the operations that are 
needed (as we do while drawing the data ftow diagrarn). In structured design, the 
focus is on partitioning the problem into input, output, and transform modules, 
which usually results in a different structure. 

7.2.3 State Modeling of Classes 

For object-oriented design, the approach just discussed for obtaining the detailed 
design may not be sufficient. In the method, the focus is on specifying the logic 
or the algorithm for the modules identified in the (function-oriented) high-level 
design. But a class is not a functional abstraction and cannot be viewed as an 
algorithm. A method of a class can be viewed as a functional module, and the 
methods can be used to specify the logic for the methods. 

The technique for getting a more detailed understanding of the class as a whole, 
without talking about the logic of different methods, has to be fundamentally dif
ferent from the PDL-based approach. An object of a class has some state and many 
operations on it. To better understand a class, the relationship between the state 
and various operations and the effect of interaction of various operations have to be 
understood. This can be viewed as one of the objectives of the detailed design ac
tivity for object-oriented development. Once the overall class is better understood, 
the algorithms for its various methods can be developed. Note that the axiomatic 
specification approach for a class, discussed earlier in this chapter, also takes this 
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view. Instead of specifying the functionality of each operation, it specifies, through 
axioms, the interaction between different operations. 

A method to understand the behavior of a dass is to view it as a finite state automata 
(FSA). An FSA consists of states and transitions between states, which take pi ace 
when some events occur. When modeling an object, the state is the value of its 
attributes, and an event is the performing of an operation on the object. Astate 
diagram relates events and states by showing how the state changes when an event 
is performed. Astate diagram for an object will generally have an initial state, from 
which all states in the FSA are reachable (i.e., there is a path from the initial state 
to all other states). 

Astate diagram for an object does not represent all the actual states of the object, 
as there are many possible states. Astate diagram attempts to represent only the 
logical states of the object. A logical state of an object is a combination of all 
those states from which the behavior of the object is similar for all possible events. 
Two logical states will have different behavior for at least one event. For example, 
for an object that represents a stack, all states that represent a stack of size more 
than 0 and less than some defined maximum are similar as the behavior of all 
operations defined on the stack will be similar in all such states (e.g., push will add 
an element, pop will remove one, etc.). However, the state representing an empty 
stack is different as the behavior of top and pop operations are different now (an 
error message may be retumed). Similarly, the state representing a full stack is 
different. The state model for this bounded size stack is shown in Figure 7.8. 

The finite state modeling of objects is an aid to understand the effect of various 
operations defined on the dass on the state of the object. A good understanding 
of this can aid in developing the logic for each of the operations. To develop the 
logic of operations, regular approaches for algorithm development Can be used. 
The model can also be used to validate if the logic for an operation is correct. As 
we have seen, for a dass, typically the input-output specification of the operations 

popterr-msg push 

push 

FIGURE 7.8. FSA model of a stack. 

pusht 
err-msg 
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is not provided. Hence, the FSA model can be used as a reference for validating 
the logic of the different methods. 

State modeling of classes has also been proposed as a technique for analysis [R +91]. 
However, we believe that it has lirnited use during analysis, and its role is more 
appropriate during detailed design when the detailed working of a class needs to 
be understood. Even here, the scope of this modeling is limited. It is likely to be 
more of use if the interaction between the methods through the state is heavy and 
there are many states in which the methods need to behave differently. 

·7.3 Verification 

There are a few techniques available to verify that the detailed design is consistent 
with the system design. The focus of verification in the detailed design phase is on 
showing that the detailed design meets the specifications laid down in the system 
design. Validating that the system as designed is consistent with the requirements of 
the system is not stressed during detailed design. The three verification methods we 
consider are design walkthroughs, critical design review, and consistency checkers. 

7.3.1 Design Walkthroughs 

A design walkthrough is a manual method of verification. The definition and use 
of walkthroughs change from organization to organization. Here we describe one 
walkthrough model. A design walkthrough is done in an informal meeting called 
by the designer or the leader of the designer's group. The walkthrough group is 
usually small and contains, along with the designer, the group leader and/or another 
designer of the group. The designer might just get together with a colleague for the 
walkthrough or the group leader might require the designer to have the walkthrough 
with hirn. 

In a walkthrough the designer explains the logic step by step, and the members of 
the group ask questions, point out possible errors or seek clarification. A beneficial 
side effect of walkthroughs is that in the process of articulating and explaining the 
design in detail, the designer hirnself can uncover some of the errors. 

Walkthroughs are essentially a form of peer review. Due to its informal nature, 
they are usually not as effective as the design review. 

7.3.2 Critical Design Review 

The purpose of critical design review is to ensure that the detailed design satisfies 
the specifications laid down during system design. As mentioned earlier, it is very 
desirable to detect and remove design errors early, as the cost of removing them 
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later can be considerably more than the cost of removing them at design time. 
Detecting errors in detailed design is the aim of critical design review. 

The critical design review process is similar to the other reviews, in that a group 
of people get together to discuss the design with the aim of revealing design errors 
or undesirable properties. The review group includes, besides the author of the 
detailed design, a member of the system design team, the programmer responsible 
for ultimately coding the module(s) under review, and an independent software 
quality engineer. 

The review can be held in the same manner as the requirement review or system 
design review. That is, each member studies the design beforehand and with the aid 
of a checklist marks items that the reviewer feels are incorrect or need clarification. 
The members ask questions and the designer tries to explain the situation. During 
the discussion design errors are revealed. 

As with any review, it should be kept in mind that the aim of the meeting is to 
uncover design errors, not try to fix them. Fixing is done later. Also, the psycho
logical frame of mind should be healthy, and the designer should not be put in a 
defensive position. The meeting should end with a list of action items, to be acted 
on later by the designer. 

The use of checklists, as with other reviews, is considered important for the success 
of the review. The checklist is a means of focusing the discussion or the "search" of 
errors. Checklists can be used by each member during private study of the design 
and during the review meeting. For best results, the checklist should be tailored to 
the project at hand, to uncover project-specific errors. Here we list a few general 
items that can be used to construct a checklist for a design review [Dun84]. 

A Sampie Checklist 

• Does each of the modules in the system design exist in detailed design? 

• Are there analyses to demonstrate that the performance requirements can be 
met? 

• Are all the assumptions explicitly stated, and are they acceptable? 

• Are all relevant aspects of system design reflected in detailed design? 

• Have the exceptional conditions been handled? 

• Are all the data formats consistent with the system design? 

• Is the design structured, and does it conform to local standards? 

• Are the sizes of data structures estimated? Are provisions made to guard 
against overflow? 

• Is each statement specified in naturallanguage easily codable? 

• Are the lopp termination conditions properly specified? 
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• Are the conditions in the loops OK? 

• Are the conditions in the if statements correct? 

• Is the nesting proper? 

• Is the module logic too complex? 

• Are the modules highly cohesive? 

7.3.3 Consistency Checkers 

Design reviews and walkthroughs are manual processes; the people involved in 
the review and walkthrough determine the errors in the design. If the design is 
specified in PDL or some other formally defined design language, it is possible to 
detect some design defects by using consistency checkers. 

Consistency checkers are essentially compilers that take as input the design speci
fied in a design language (PDL in our case). Clearly, they cannot produce executable 
code because the inner syntax ofPDL allows naturallanguage and many activities 
are specified in the naturallanguage. However, the module interface specifications 
(which belong to outer syntax) are specified formally. A consistency checker can 
ensure that any modules invoked or used by a given module actually exist in the 
design and that the interface used by the caller is consistent with the interface 
definition of the called module. It can also check if the used global data items are 
indeed defined globally in the design. 

Depending on the precision and syntax ofthe design language, consistency check
ers can produce other information as weIl. In addition, these tools can be used to 
compute the complexity of modules and other metrics, because these metrics are 
based on alternate and loop constructs, which have a formal syntax in PDL. The 
trade-off here is that the more formal the design language, the more checking can 
be done during design, but the cost is that the design language becomes less flexible 
and tends towards a programming language. 

After the detailed design the logic of the system and the data structures are largely 
specified. Only the implementation-oriented details, which are often specific to 
the programming language used, need to be further defined. Hence, many of the 
metrics that are traditionally associated with code can be used effectively after 
detailed design. During detailed design all the metrics covered during the system 
design are applicable and useful. With the logic of modules available after detailed 
design, it is meaningful to talk about the complexity of a module. Traditionally, 
complexity metrics are applied to code, but they can easily be applied to detailed 
design as weIl. Here we describe some metrics applicable to detailed design. 
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7.4.1 Cyclomatic Complexity 

Based on the capability of the human mind and the experience of people, it is 
generally recognized that conditions and control statements add complexity to a 
pro gram. Given two programs with the same size, the program with the larger 
number of decision statements is likely to be more complex. The simplest measure 
of complexity, then, is the number of constructs that represent branches in the 
control flow of the program, like if then else, while do, repeat until, 
and goto statements. 

A more refined measure is the cyclomatic complexity measure proposed by Mc
Cabe, which is a graph-theoretic-based concept. For a graph G with n nodes, e 
edges, and p connected components, the cyclomatic number V(G) is defined as 

V(G) = e - n + p. 

To use this to define the cyclomatic complexity of a module, the control flow graph 
G of the module is first drawn. To construct a control flow graph of a program 
module, break the module into blocks delimited by statements that affect the control 
flow, like if, while, repeat, and goto. These blocks form the nodes of the 
graph. If the control from a block i can branch to a block j, then draw an arc from 
node i to node j in the graph. The control flow of a program can be constructed 
mechanically. As an example, consider the C-like funtion for bubble sorting, given 
next. The control flow graph for this is given in Figure 7.9. 

o. { 

1. i = 1 ; 
2. while (i <= n) { 

3. j = i' , 
4. while (j <= i) { 

5. if (A Ei] < A[j]) 

6. swap(A Ei] , A [j]) ; 

7. j j + l' , } 

8. i i + 1; } 

9. } 

The graph of a module has an entry node and an exit node, corresponding to the 
first and last blocks of statements (or we can create artificial nodes for simplicity, 
as in the example). In such graphs there will be a path from the entry node to any 
node and a path from any node to the exit node (assuming the program has no 
anomalies like unreachable code). For such a graph, the cyclomatic number can 
be 0 if the code is a linear sequence of statements without any control statement. 
If we draw an arc from the exit node to the entry node, the graph will be strongly 
connected because there is a path between any two nodes. The cyclomatic number 
of a graph for any pro gram will then be nonzero, and it is desirable to have a nonzero 
complexity for a simple program without any conditions (after all, there is some 
complexity in such a program). Hence, for computing the cyclomatic complexity 
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FIGURE 7.9. Flow graph of the example. 

of a program, an arc is added from the exit node to the start node, which makes it 
a strongly connected graph. For a module, the cyclomatic complexity is defined to 
be the cyclomatic number of such a graph for the module. 

As it turns out the cyc10matic complexity of a module (or cyc10matic number of 
its graph) is equal to the maximum number of linearly independent circuits in the 
graph. A set of circuits is linearly independent if no circuit is totally contained 
in another circuit or is a combination of other circuits. So, for calculating the 
cyc10matic number of a module, we can draw the graph, make it connected by 
drawing an arc from the exit node to the entry node, and then either count the 
number of circuits or compute it by counting the number of edges and nodes. In 
the graph shown in Figure 7.9, the cyc10matic complexity is 

v (G) = 10 - 7 + 1 = 4. 

The independent circuits are: 

ckt 1: b c e b 
ckt 2: bc d e b 
ckt 3: ab fa 
ckt 4: aga 

It can also be shown that the cyc10matic complexity of a module is the number of 
decisions in the module plus one, where adecision is effectively any conditional 
statement in the module [CDS86]. Hence, we can also compute the cyclomatic 
complexity simply by counting the number of decisions in the module. For this 
example, as we can see, we get the same cyclomatic complexity for the module 
if we add 1 to the number of decisions in the module. (The module has three 
decisions: two in the two while statements and one in the if statement.) 
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The cyclomatic number is one quantitative measure of module complexity. It can 
be extended to compute the complexity of the whole pro gram, though it is more 
suitable at the module level. McCabe proposed that the cyclomatic complexity of 
modules should, in general, be kept below 10. The cyclomatic number can also 
be used as a number of paths that should be tested during testing. Cyclomatic 
complexity is one of the most widely used complexity measures. Experiments 
indicate that the cyclomatic complexity is highly correlated to the size of the module 
in LOC (after all, the more lines of code the greater the number of decisions). It 
has also been found to be correlated to the number of faults found in modules. 

7.4.2 Data Bindings 

We have seen that coupling and cohesion are important concepts for evaluating a 
design. However, to be truly effective, metrics are needed to "measure" the coupling 
between modules or the cohesion of a module. During system design, we tried to 
quantify coupling based on information flow between modules. Now that the logic 
of modules is also available, we can come up with metrics that also consider the 
logic. One metric that attempts to capture the module-level concept of coupling is 
data binding. Data bindings are measures that capture the data interaction across 
portions of a software system [HB85]. In other words, data bindings try to specify 
how strongly coupled different modules in a software system are. Different types 
of data bindings are possible [HB85]. 

A potential data binding is defined as a triplet (p, x, q), where p and q are modules 
andx is a variable within the static scope ofboth p andq. Thisreflects the possibility 
that the modules p and q may communicate with each other through the shared 
variable x. This binding does not consider the internals of p and q to determine if 
the variable xis actually accessed in any ofthe modules. This binding is based on 
data declaration. 

A used data binding is a potential binding where both p and q use the variable x 
for reference or assignment. This is harder to compute than potential data binding 
and requires more information about the internal logic of a module. 

An actual data binding is a used data binding with the additional restriction that the 
module p assigns a value to x and q references X.1t is the hardest to compute, and it 
signifies the situation where information may flow from the module p to module q 
through the shared variable x. Computation of actual data binding requires detailed 
logic descriptions of modules p and q. 

All of these data bindings attempt to represent the strength of interconnections 
among modules. The greater the number of bindings between two modules, the 
higher the interconnection between these modules. For a particular type ofbinding, 
a matrix can be computed that contains the number of bindings between different 
modules. This matrix can be used for further statistical analysis to determine the 
interconnection strength of the system or a subsystem. 
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7.4.3 Cohesion Metric 

Here we discuss one attempt at quantifying the cohesion of a module [Eme84]. 
To compute the value of the cohesion metric for a module M, a flow graph G is 
constructed for M. Each vertex in G is an executable statement in M. For each 
node, we also record the variable referenced in the statement. An arc exists from a 
node Si to another node S j if the statement S j can immediately follow the statement 
Si in some execution of the module. In addition to these, we add an initial node I 
from where the execution of the module starts, and a final node T, at which the 
execution ofthe module terminates. For termination statements (e.g., return, exit) 
we draw an arc from the statement to T. 

From G a reduced flow graph is constructed by deleting those nodes that do not 
refer to any variable (such as unconstrained gotos). All the ares coming in the 
deleted node are redirected to the node that is the successor of the deleted node 
(such nodes will have only one successor). 

Assurne that the variables are sequentially numbered as 1,2, ... , n. For a variable 
i, R i is the reference set, which is the set of all the executable statements that refer 
to the variable i. The union of all the R i s is the set of all the no des in the graph 
(minus the node for T, which is a nonexecuting node). Let IGI referto the (number 
of nodes - 1) for the reduced graph. 

The cohesion of a set of statements S is defined as 

C(S) __ IS_I_di_m_(S_) 
IGI dim(G) 

where dimO is the dimension of a set of statements, which is the maximum number 
of linearly independent paths from I to T that pass through any element of S. Thus, 
the dimension of a set of statements S is the count of all the independent paths 
from the start statement to the end statement of a module that includes at least one 
statement from the set. If S is the set of all the statements in the module (if S is the 
same as G), then dirn S is the same as the cyclomatic complexity of the module. 

The cohesion of a module is defined as the average cohesion of the reference sets 
of the different statements or nodes in (reduced) G. Hence the cohesion of the 
module C(M) is 

"i=n C(R.) 
C(M) = L..i=1 I. 

n 

Essentially, this metric is trying to measure cohesion of a module by seeing how 
many independent paths of the module go through the different statements. The 
idea is that if a module has high cohesion, most of the variables will be used by 
statements in most paths. Hence for a high-cohesion module, the cohesion of the 
reference set of each variable will be high. The highest cohesion number achievable 
by this is when the dimension of all the reference sets is all the independent paths, 
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thus the same as the cyclomatic complexity. In other words, the highest cohesion 
is when all the independent paths use all the variables of the module. 

7.5 Summary 

Detailed design starts after the system design phase is completed and the system 
design has been certified through a review. The goal of this phase is to develop the 
intemallogic of each of the modules identified during system design. 

Before deciding on the logic of a module, formal specifications of the module may 
be developed. The specifications should be such that they are complete, unam
biguous, and precise, and they do not suggest any particular implementation. Two 
module units are frequently chosen for formal specifications: functional modules 
and data abstraction modules. Both of these formal methods can specify the behav
ior of the modules without assuming any implementation for the module. We have 
discussed some such methods. However, most formal methods for specifications 
tend to be rather cumbersome, not very expressive, and hard to understand or write. 
For this reason, formal specifications are not often used. 

To express the intemallogic of a module, we need a design language. The design 
language should be such that it is flexible enough to be easily usable, yet precise 
enough to be easily convertible into code. We have described a language, process 
design language (PDL), that satisfies the bill. PDL can be used to express the 
detailed design of systems. It has a formal outer syntax and a flexible inner syntax 
and vocabulary, giving it a balance between formalism and ease of expression. 

Like any phase, we need some metrics to evaluate the effectiveness of the phase 
and to evaluate the output of that phase. We considered a metric called cyclomatic 
complexity for evaluating the complexity of modules from their detailed design. 
This metric can be also used to assess the overall complexity of the system, or 
it can be used to identify the most complex modules, which are more likely to 
be "error-prone." In a module the cyclomatic complexity equals the number of 
decisions in the module plus one. We also discussed the data binding metric and a 
cohesion metric. 

A few techniques exist for verifying the detailed design. The most common are 
design walkthroughs and critical design review. Automated tools can be used for 
some consistency checking if a well-defined design language, like PDL, is used. 
Even with automated consistency checkers, reviews and walkthroughs remain the 
most important methods for verifying the detailed design. We have described the 
review process and given a sampie checklist that can be used in the review. 

A final word about the use of the detailed design phase. This is one of the phases 
that is frequently not performed formally and completely because it is not always 
the case that a detailed design description of the modules adds much value, and 
experienced programmers feel that they can go directly to coding. Furthermore, the 
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detailed design document has little archival value during maintenance, unlike the 
requirements document or the system design document. The main reason for this is 
that it is not practical to keep the detailed design document consistent with the code 
as the code changes during the coding and testing activities. A logic description 
that does not describe the code accurately is of little use; hence the primary use of 
the detailed design phase is to design the logic and get it verified before proceeding. 
With this as the basic goal, it might be practical to only develop the detailed design 
for the more complex and important modules rather than for the entire system. 
Another approach that is sometimes followed is to make the detailed design phase 
informal, where the programmer prepares the detailed design as a step toward 
coding, but no formal detailed design document is produced. In other words, the 
detailed design is used primarily as an aid for coding. For these reasons, we will 
not give the detailed design of the case study. We will proceed straight from the 
design to coding, and detailed design will be used by the programmer as a step in 
coding, which is not being formalized for this project as it is not a very large and 
critical project. 

1. The detailed design of a system can involve many persons, each developing 
the detailed design of a set of modules. Draw a process diagram for this 
method of detailed design development. 

2. Why are formal specifications of modules desirable? What are the limitations 
of current formal methods and why have they not come into common use? 

3. Formally specify the following modules and write their detailed design: 
(a) reverse(L): reverses the input list L. 

(b) inserteS, I): inserts the element i in the set S. 

(c) strcat(s1, s2): concatenates string s2 at the end of sI. 

(d) strlen(s): determines the length of a string s. 

(e) min(S): determines the minimum of the set S. 

4. Provide axioms for the data types described here. The name of each type and 
operations on that type are given. 
(a) type String 

null 0 ~ String 
isnull (String) ~ boolean 
len(String) ~ integer 
addchar(String, char) ~ String 
index(String, char) ~ integer 

(b) type Set 
emptysetO ~ Set 
isempty(Set) ~ boolean 
insert(Set, item) ~ Set 
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delete(Set, item) -+ Set 
has(set, item) -+ boolean 

(e) type Btree /* a simple binary tree */ 
emptytreeO -+ Btree 
make(Btree, item, Btree) -+ Btree 
isempty(Btree) -+ boolean 
left(Btree) -+ Btree 
right(Btree) -+ Btree 
isin(Btree, item) -+ boolean 
insert(Btree, item) -+ Btree 

(d) type SymbolTable 
initO -+ SymbolTable 
enterbloek(SymbolTable) -+ SymbolTable 
addid(SymboITable, identifier, attributelist) -+ SymbolTable 
leavebloek(SymbolTable) -+ SymbolTable 
isinbloek(SymbolTable, identifier) -+ boolean 
retrieve(SymbolTable, identifier) -+ attributelist 

(e) type Library 
createO -+ Library 
add(Library, book) -+ Library 
checkout(Library, book) -+ Library 
retum(Library, book) -+ Library 
isin(Library, book) -+ boolean 
isempty(Library) -+ boolean 

5. Extend the PDL with constructs to support classes. Then write the detailed 
design for the classes just described. 

6. What features would you like to add to PDL if the target source language 
supports data abstraction? 

7. If cyclomatic complexity of a module is mueh higher than the suggested 
limit of 10, what will you do? Give reasons and guidelines for whatever you 
propose. 

8. Consider an implementation of the type Btree as a set of procedures and 
functions (without data encapsulation). From the detailed design obtained 
earlier, determine the cohesion of different procedures/functions and coupling 
between them using the metrics described in this chapter. 

9. Design an experiment to study the relationship between the cyclomatic com
plexity and size in LOC of modules. Collect a set of pro grams and then 
perform the experiment and determine the nature of the relationship between 
them for these programs. 

10. Design an experiment to study the relation between cyclomatic complexity 
and "error-proneness" of modules. If you ean colleet error data, execute the 
experiment on the data you can collect. 
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Coding 

The goal of the coding or programming phase is to translate the design of the system 
produced during the design phase into code in a given programming language, 
which can be executed by a computer and that performs the computation specified 
by the design. For a given design, the aim is to implement the design in the best 
possible manner. 

The coding phase affects both testing and maintenance profoundly. As we saw 
earlier, the time spent in coding is a small percentage of the total software cost, 
while testing and maintenance consume the major percentage. Thus, it should be 
clear that the goal during coding should not be to reduce the implementation cost, 
but the goal should be to reduce the cost of later phases, even if it means that the 
cost of this phase has to increase. In other words, the goal during this phase is not 
to simplify the job of the programmer. Rather, the goal should be to simplify the 
job of the tester and the maintainer. 

This distinction is important, as most programmers are individualistic, and mostly 
concemed about how to finish their job quickly, without keeping the later phases in 
mind. During implementation, it should be kept in mind that the programs should 
not be constructed so that they are easy to write, but so that they are easy to read 
and understand. A program is read a lot more often and by a lot more people during 
the later phases. Often, making a pro gram more readable will require extra work 
by the programmers. For example, sometimes there are "quick fixes" to modify a 
given code easily, which result in a code that is more difficult to understand. In 
such cases, in the interest of simplifying the later phases, the easy "quick fixes" 
should not be adopted. 

There are many different criteria for judging a pro gram, including readability, 
size of the program, execution time, and required memory. Having readability 
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Resulting Rank (1 = Best) 
01 02 03 04 05 

Minimize effort to complete (01) 1 4 4 5 3 
Minimize number of statements (02) 2-3 1 2 3 5 
Minimize memory required (03) 5 2 1 4 4 
Maximize program clarity (04) 4 3 3 2 2 
Maximize output clarity (05) 2-3 5 5 1 1 

FIGURE 8.1. The Weinberg experiment. 

and understandability as a clear objective of the coding activity can itself help in 
producing software that is more maintainable. A famous experiment by Weinberg 
showed that if programmers are specified a clear objective for the program, they 
usually satisfy it [WS74]. In the experiment, five different teams were given the 
same problem for which they had to develop programs. However, each of the teams 
was specified a different objective, which it had to satisfy. The different objectives 
given were: minimize the effort required to complete the program, minimize the 
number of statements, minimize the memory required, maximize the program 
clarity, and maximize the output clarity. It was found that in most cases each 
team did the best for the objective that was specified to it. The rank of the different 
teams for the different objectives is shown in Figure 8.1. 

The experiment clearly shows that if objectives are clear, programmers tend to 
achieve that objective. Hence, if readability is an objective of the coding activity, 
then it is likely that programmers will develop easily understandable programs. For 
our purposes, ease of understanding and modification should be the basic goals of 
the programming activity. This means that simplicity and clarity are desirable, 
while cleverness and complexity are not. 

8.1 Programming Practice 

As we have said, the primary goal of the coding phase is to translate the given 
design into source code in a given programming language, so that code is simple, 
easy to test, and easy to understand and modify. Simplicity and clarity are the 
properties a programmer should strive for. 

Good programrning is a skill that can only be acquired by practice. However, much 
can be leamed from the experience of others, and some general rules and guide
lines can be laid for the programmer. Good programming (producing correct and 
simple programs) is a practice independent of the target programming language, 
although some well-structured languages like Pascal, ADA, and Modula make the 
programmer's job simpler. In this section, we will discuss some concepts related 
to coding in a language-independent manner. 
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8.1.1 Top-Down and Bottom-Up 

All designs contain hierarchies, as creating a hierarchy is a natural way to manage 
complexity. Most design methodologies for software also produce hierarchies. The 
hierarchy may be of functional modules, as is the case with the structured design 
methodology where the hierarchy of modules is represented by the structure chart. 
Or the hierarchy may be an object hierarchy as is produced by object-oriented 
design methods and frequently represented by object diagrams. The question at 
coding time is: given the hierarchy of modules produced by design, in what order 
should the modules be built-starting from the top level or starting from the bottom 
level? 

In a top-down implementation, the implementation starts from the top of the hi
erarchy and proceeds to the lower levels. First the main module is implemented, 
then its subordinates are implemented, and their subordinates, and so on. In a 
bottom-up implementation, the process is the reverse. The development starts with 
implementing the modules at the bottom of the hierarchy and proceeds through the 
higher levels until it reaches the top. 

Top-down and bottom-up implementation should not be confused with top-down 
and bottom-up design. Here, the design is being implemented, and if the design is 
fairly detailed and complete, its implementation can proceed in either the top-down 
or the bottom-up manner, even if the design was produced in a top-down manner. 
Which of the two is used mostly affects testing. 

If there is a complete design, why is the order in which the modules are built an 
issue? The main reason is that we want to incrementally build the system. That is, 
we wnat to build the system in parts, even though the design of the entire system 
has been done. This is necessitated by the fact that for large systems it is simply not 
feasible or desirable to build the whole system and then test it. All large systems 
must be built by assembling validated pieces together. The case with software 
systems is the same. Parts of the system have to first be built and tested before 
putting them together to form the system. Because parts have to be built and tested 
separately, the issue of top-down versus bottom-up arises. 

The real issue in which order the modules are coded comes in testing. If all the 
modules are to be developed and then put together to form the system for testing 
purposes, as is done for small systems, it is immaterial which module is coded first. 
However, when modules have to be tested separately, top-down and bottom-up lead 
to top-down and bottom-up approaches to testing. And these two approaches have 
different consequences. Essentially, when we proceed top-down, for testing a set 
of modules at the top of the hierarchy, stubs will have to be written for the lower
level modules that the set of modules under testing invoke. On the other hand, 
when we proceed bottom-up, all modules that are lower in the hierarchy have been 
developed and driver modules are needed to invoke these modules under testing. 
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Top-down versus bottom-up is also a pertinent issue when the design is not detailed 
enough. In such cases, some of the design decisions have to be made during devel
opment. This may be true, for example, when building a prototype. In such cases, 
top-down development may be preferable to aid the design while the implemen
tation is progressing. On the other hand, many complex systems, like operating 
systems or networking software systems, are naturally organized as layers. In a 
layered architecture, a layer provides some services to the layers above, which use 
these services to implement the services it provides. For a layered architecture, it 
is generally best for the implementation to proceed in a bottom-up manner. 

In practice, in large systems, a combination of the two approaches is used during 
coding. The top modules of the system generally contain the overall view of the 
system and may even contain the user interfaces. Starting with these modules and 
testing them gives some feedback regarding the functionality of the system and 
whether the "look and feeI" of the system is OK. For this, it is best if development 
proceeds top-down. On the other hand, the bottom-Ievel modules typically form the 
"service routines" that provide the basic operations used by higher-Ievel modules.1t 
is therefore important to make sure that these service modules are working correctly 
before they are used by other modules. This suggests that the development should 
proceed in a bottom-up manner. As both issues are important in a large project, it 
may be best to follow a combination approach for such systems. 

Finally, it should be pointed out that incremental building of code is a different 
issue from the one addressed in the incremental enhancement process model. In 
the latter, the whole software is built in increments. Hence, even the SRS and the 
design for an increment focus on that increment only. However, in incremental 
building, which we are discussing here, the design itself is complete for the system 
we are building. The issue is in which order the modules specified in the design 
should be coded. 

8.1.2 Structured Programming 

As stated earlier the basic objective of the coding activity is to produce programs 
that are easy to understand. It has been argued by many that structured program
ming practice helps develop programs that are easier to understand. The structured 
programming movement started in the 1970s, and much has been said and written 
about it. Now the concept pervades so much that it is generally accepted--even 
implied-that programming should be structured. Though a lot of emphasis has 
been placed on structured programming, the concept and motivation behind struc
tured programming are often not wen understood. Structured programming is often 
regarded as "goto-Iess" programming. Although extensive use of gotos is certainly 
not desirable, structured pro grams can be written with the use of gotos. Here we 
provide abrief discussion on what structured programming iso 
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A program has a static structure as weH as a dynarnic structure. The static structure 
is the structure of the text of the program, which is usually just a linear organization 
of statements of the pro gram. The dynamic structure of the program is the sequence 
of statements executed during the execution of the program. In other words, both 
the static structure and the dynamic behavior are sequences of statements; where 
the sequence representing the static structure of a program is fixed, the sequence 
of statements it executes can change from execution to execution. 

The general notion of correctness of the program means that when the pro gram 
executes, it produces the desired behavior. To show that a program is correct, 
we need to show that when the program executes, its behavior is what is ex
pected. Consequently, when we argue about a program, either formaHy to prove 
that it is correct or informaHy to debug it or convince ourselves that it works, we 
study the static structure of the program (i.e., its code) but try to argue about its 
dynamic behavior. In other words, much of the activity of pro gram understand
ing is to understand the dynamic behavior of the program from the text of the 
program. 

It will clearly be easier to understand the dynamic behavior if the structure in the 
dynamic behavior resembles the static structure. The closer the correspondence 
between execution and text structure, the easier the program is to understand, and 
the more different the structure during execution, the harder it will be to argue 
about the behavior from the pro gram text. The goal of structured programming is 
to ensure that the static structure and the dynamic structures are the same. That is, 
the objective of structured programming is to write programs so that the sequence of 
statements executed during the execution of a program is the same as the sequence 
of statements in the text of that pro gram. As the statements in a pro gram text are 
linearly organized, the objective of structured programrning becomes developing 
programs whose control fiow during execution is linearized and follows the linear 
organization of the program text. 

Clearly, no meaningful pro gram can be written as a sequence of simple statements 
without any branching or repetition (which also involves branching). So, how is 
the objective of linearizing the control fiow to be achieved? By making use of 
structured constructs. In structured programming, a statement is not a simple as
signment statement, it is a structured statement. The key property of a structured 
statement is that it has a single-entry and a single-exit. That is, during execution, 
the execution of the (structured) statement starts from one defined point and the 
execution terminates at one defined point. With single-entry and single-exit state
ments, we can view a program as a sequence of (structured) statements. And if 
all statements are structured statements, then during execution, the sequence of 
execution of these statements will be the same as the sequence in the pro gram 
text. Hence, by using single-entry and single-exit statements, the correspondence 
between the static and dynamic structures can be obtained. The most commonly 
used single-entry and single-exit statements are: 
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Selection: if B then S I else S2 
ifB then SI 

Iteration: While B do S 
repeat S until B· 

Sequencing: SI; S2; S3; ... 

It can be shown that these three basic constructs are sufficient to program any 
conceivable algorithm. Modem languages have other such constructs that help 
linearize the control flow of a program, which, generally speaking, makes it easier to 
understand a program. Hence, programs should be written so that, as far as possible, 
single-entry, single-exit control constructs are used. The basic goal, as we have tried 
to emphasize, is to make the logic of the program simple to understand. No hard
and-fast rule can be formulated that will be applicable under all circumstances. 
Structured programming practice forms a good basis and guideline for writing 
programs clearly. 

It should be pointed out that the main reason structured programming was pro
mulgated is formal verification of programs. As we will see later in this chapter, 
during verification, a program is considered a sequence of executable statements, 
and verification proceeds step by step, considering one statement in the statement 
list (the program) at a time. Implied in these verification methods is the assumption 
that during execution, the statements will be executed in the sequence in which 
they are organized in the program text. If this assumption is satisfied, the task of 
verification becomes easier. Hence, even from the point of view of verification, it is 
important that the sequence of execution of statements is the same as the sequence 
of statements in the text. 

A final note about the structured constructs. Any piece of code with a single-entry 
and single-exit cannot be considered a structured construct. If that is the case, 
one could always define appropriate units in any program to make it appear as a 
sequence of these units (in the worst case, the whole program could be defined 
to be a unit). The basic objective of using structured constructs is to linearize 
the control flow so that the execution behavior is easier to understand and argue 
about. In linearized control flow, if we understand the behavior of each of the basic 
constructs properly, the behavior of the program can be considered a composition 
of the behaviors of the different statements. For this basic approach to work, it 
is implied that we can clearly understand the behavior of each construct. This 
requires that we be able to succinctly capture or describe the behavior of each 
construct. Unless we can do this, it will not be possible to compose them. Clearly, 
for an arbitrary structure, we cannot do this merely because it has a single-entry 
and single-exit. It is from this viewpoint that the structures mentioned earlier are 
chosen as structured statements. There are well-defined rules that specify how 
these statements behave during execution, which allows us to argue about larger 
programs. 
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Overall, it can be said that structured programming, in general, leads to programs 
that are easier to understand than unstructured programs, and that such programs 
are easier (relatively speaking) to formally prove. However, it should be kept in 
mind that structured programming is not an end in itself. Our basic objective is that 
the program be easy to understand. And structured programming is a safe approach 
for achieving this objective. Still, there are some common programming practices 
that are now weIl understood that make use of unstructured constructs Ce.g., break 
statement, continue statement). Although efforts should be made to avoid using 
statements that effectively violate the single-entry single-exit property, if the use 
of such statements is the simplest way to organize the pro gram, then from the point 
of view of readability, the constructs should be used. The main point is that any 
unstructured construct should be used only if the structured alternative is harder to 
understand. This view can be taken only because we are focusing on readability. 
If the objective was formal verifiability, structured programming will probably be 
necessary. 

8.1.3 Information Hiding 

A software solution to a problem always contains data structures that are meant to 
represent information in the problem domain. That is, when software is developed 
to solve a problem, the software uses some data structures to capture the information 
in the problem domain. With the problem information represented internally as data 
structures, the required functionality of the problem domain, which is in terms of 
information in that domain, can be implemented as software operations on the data 
structures. Hence, any software solution to a problem contains data structures that 
represent information in the problem domain. 

In the problem domain, in general, only certain operations are performed on some 
information. That is, a piece of information in the problem domain is used only 
in a limited number of ways in the problem domain. For example, a ledger in 
an accountant's office has some very defined uses: debit, credit, check the current 
balance, etc. An operation where all debits are multiplied together and then divided 
by the sum of all credits is typically not performed. So, any information in the 
problem domain typically has a small number of defined operations performed on 
it. 

When the information is represented as data structures, the same principle should 
be applied, and only some defined operations should be performed on the data 
structures. This, essentially, is the principle of information hiding. The information 
captured in the data structures should be hidden from the rest of the system, and only 
the access functions on the data structures that represent the operations performed 
on the information should be visible. In other words, when the information is 
captured in data structures and then on the data structures that represent some 
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information, for each operation on the information an access function should be 
provided. And as the rest of the system in the problem domain only performs 
these defined operations on the information, the rest of the modules in the software 
should only use these access functions to access and manipulate the data structures. 

If the information hiding principle is used, the data structure need not be di
rectly used and manipulated by other modules. All modules, other than the access 
functions, access the data structure through the access functions. 

Information hiding can reduce the coupling between modules and make the system 
more maintainable. If data structures are directly used in modules, then all modules 
that use some data structures are coupled with each other and if change is made 
in one of them, the effect on all the other modules needs to be evaluated. With 
information hiding, the impact on the modules using the data need to be evaluated 
only when the data structure or its access functions are changed. Otherwise, as the 
other modules are not directly accessing the data, changes in these modules will 
have little direct effect on other modules using the data. Also, when a data structure 
is changed, the effect of the change is generally limited to the access functions if 
information hiding is used. Otherwise, all modules using the data structure may 
have to be changed. 

Information hiding is also an effective tool for managing the complexity of devel
oping software. As we have seen, whenever possible, problem partitioning must 
be used so that concerns can be separated and different parts solved separately. By 
using information hiding, we have separated the concern of managing the data from 
the concern of using the data to produce some desired results. Now, to produce 
the desired results, only the desired operations on the data need to be performed, 
thereby making the task of designing these modules easier. Without information 
hiding, this module will also have to deal with the problem of properly accessing 
and modifying the data. 

Another form of information hiding is to let a module see only those data items 
needed by it. The other data items should be "hidden" from such modules and the 
modules should not be allowed to access these data items. Thus, each module is 
given access to data items on a "need-to-know" basis. This level of information 
hiding is usually not practical, and most languages do not support this level of 
access restriction. However, the information hiding principle discussed earlier, is 
supported by many modem programming languages in the form of data abstrac
tion. We discussed the concept of data types and classes earlier, and we have seen 
that it forms the basis of the object-oriented design approach. 

With support for data abstraction, a package or a module is defined that encapsulates 
the data. Some operations are defined by the module on the encapsulated data. Other 
modules that are outside this module can only invoke these predefined operations 
on the encapsulated data. The advantage of this form of data abstraction is that 
the data is entirely in the control of the module in which the data is encapsulated. 
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Other modules cannot access or modify the data; the operations that can access 
and modify are also a part of this module. 

Many of the older languages, like Pascal, C, and FORTRAN, do not provide mech
anisms to support data abstraction. With such languages, data abstraction can be 
supported only by a disciplined use of the language. That is, the access restrictions 
will have to be imposed by the programmers; the language does not provide them. 
For example, to implement a data abstraction of a stack in C, one method is to de
fine a struct containing aB the data items needed to implement the stack and then 
to define functions and procedures on variables of this type. A possible definition 
of the struct and the interface of the "push" operation is given next: 

typedef struct { 
int elts [100J ; 
int top; 

} stack; 

void push (s, i) 
stack S; int i; 
{ 

} 

Note that in implementing information hiding in languages like C and Pascal, the 
language does not impose any access restrictions. In the example of the stack 
earlier, the structure of a variable s declared of the type stack, can be accessed 
from procedures other than the ones defined for stack. That is why discipline by 
the programmers is needed to emulate data abstraction. Regardless of whether or 
not the language provides constructs for data abstraction, it is desirable to support 
data abstraction in cases where the data and operations on the data are weIl defined. 
Data abstraction is one way to increase the clarity of the program. It helps in clean 
partitioning of the program into pieces that can be separately implemented and 
understood. 

8.1.4 Programming Style 

It is impossible to provide an exhaustive list of what to do and what not to do to 
produce simple readable code. Being able to do this will amount to providing an 
algorithm for writing good code. Next we will list some general mies that usuaBy 
apply. 

Names: Selecting module and variable names is often not considered important 
by novice programmers. Only when one starts reading pro grams written by others 
where the variable names are cryptic and not representative does one realize the 
importance ofselecting proper names. Most variables in a program reftect some 
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entity in the problem domain, and the modules reftect same process. Variable names 
should be closely related to the entity they represent, and module names should 
reftect their activity. It is bad practice to choose cryptic names (just to avoid typing) 
or totally unrelated names. It is also bad practice to use the same name for multiple 
purposes. 

Control Constructs: As discussed earlier, it is desirable that as much as possible 
single-entry, single-exit constructs be used. It is also desirable to use a few standard 
control constructs rather than using a wide variety of constructs, just because they 
are available in the language. 

Gotos: Gotos should be used sparingly and in a disciplined manner (this discussion 
is not applicable to gotos used to support single-entry, single-exit constructs in 
languages like FORTRAN). Only when the alternative to using gotos is more 
complex should the gotos be used. In any case, alternatives must be thought of 
be fore finally using a goto. If a goto must be used, forward transfers (ar ajump to a 
later statement) is more acceptable than a backward jump. Use of gotos for exiting 
a loop or for invoking eITor handlers is quite acceptable (many languages provide 
separate constructs for these situations, in which case those constructs should be 
used). 

Information Hiding: As discussed earlier, information hiding should be supported 
where possible. Only the access functions for the data structures should be made 
visible while hiding the data structure behind these functions. 

User-Defined Types: Modem languages allow users to define types like the enu
merated type. When such facilities are available, they should be exploited where 
applicable. For example, when working with dates, a type can be defined for the 
day of the week. In Pascal, this is done as fallows: 

type days = (Mon, Tue, Wed, Thur, Fri, Sat, Sun); 

Variables can then be declared of this type. Using such types makes the pro gram 
much clearer than defining codes for each day and then working with codes. 

Nesting: The different control constructs, particularly the if-then-else, can be 
nested. If the nesting be comes too deep, the programs become harder to under
stand. In case of deeply nested if-then-elses, it is often difficult to determine the if 
statement to which a particularelse clause is associated. Where possible, deep nest
ing should be avoided, even if it means a little inefficiency. For example, consider 
the following construct of nested if-then-elses: 

ifCI then SI 
else if C2 then S2 

else if C3 then S3 
else if C4 then S4; 

If the different conditions are disjoint (as they often are), this structure can be 
converted inta the following structure: 
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This sequence of statements will produce the same result as the earlier sequence 
(if the conditions are disjoint), but it is much easier to understand. The price is a 
little inefficiency in that the latter conditions will be evaluated even if a condition 
evaluates to true, while in the previous case the condition evaluation stops when 
one evaluates to true. Other such situations can be constructed where alternative 
program segments can be constructed to avoid a deep level of nesting. In general, 
if the price is only a little inefficiency, it is more desirable to avoid deep nesting. 

Module Size: We discussed this issue during system design. A programmer should 
carefully examine any routine with very few statements (say fewer than 5) or 
with too many statements (say more than 50). Large modules often will not be 
functionally cohesive, and too-small modules might incur unnecessary overhead. 
There can be no hard-and-fast rule about module sizes the guiding principle should 
be cohesion and coupling. 

Module Interface: A module with a complex interface should be carefully exam
ined. Such modules might not be functionally cohesive and might be implementing 
multiple functions. As a rule of thumb, any module whose interface has more than 
five parameters should be carefully examined and broken into multiple modules 
with a simpler interface if possible. 

Program Layout: How the program is organized and presented can have great 
effect on the readability of it. Proper indentation, blank spaces, and parentheses 
should be used to enhance the readability ofprograms. Automated tools are avail
able to "pretty print" a program, but it is good practice to have a clear layout of 
programs. 

Side Effects: When a module is invoked, it sometimes has side effects of modifying 
the program state beyond the modification of parameters listed in the module 
interface definition, for example, modifying global variables. Such side effects 
should be avoided where possible, and if a module has side effects, they should be 
properly documented. 

Robustness: A program is robust if it does something planned even for exceptional 
conditions. A pro gram might encounter exceptional conditions in such forms as 
incorrect input, the incorrect value of some variable, and overflow. A program 
should try to handle such situations. In general, a pro gram should check for validity 
of inputs, where possible, and should check for possible overflow of the data 
structures. If such situations do arise, the program should not just "crash" or "core 
dump"; it should pro du ce some meaningful message and exit gracefully. 
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8.1.5 Internal Documentation 

In the coding phase, the output document is the code itself. However, some amount 
of internal documentation in the code can be extremely useful in enhancing the 
understandability of programs. Internal documentation of programs is done by 
the use of comments. All languages provide a means for writing comments in 
programs. Comments are textual statements that are meant for the program reader 
and are not executed. Comments, if properly written and kept consistent with the 
code, can be invaluable during maintenance. 

The purpose of comments is not to explain in English the logic ofthe program-the 
pro gram itself is the best documentation far the details of the logic. The comments 
should explain what the code is doing, not how it is doing it. This means that a 
comment is not needed for every line of the code, as is often done by novice pro
grammers who are taught the virtues of comments. Comments should be provided 
for blocks of code, particularly those parts of code that are hard to follow. In most 
cases, only comments for the modules need to be provided. 

Providing comments for modules is most useful, as modules form the unit of testing, 
compiling, verification and modification. Comments for a module are often called 
prologue far the module. It is best to standardize the structure of the prologue of 
the module. It is desirable if the prologue contains the following information: 

1. Module functionality, or what the module is doing. 

2. Parameters and their purpose. 

3. Assumptions about the inputs, if any. 

4. Global variables accessed and/or modified in the module. 

An explanation of parameters (whether they are input only, output only, or both 
input and output; why they are needed by the module; how the parameters are 
modified) can be quite useful during maintenance. Stating how the global data is 
affected and the side effects of a module is also very useful during maintenance. 

In addition other information can be inc1uded, depending on the local coding stan
dards. Examples are the name of the author, the date of compilation, and the last 
date of modification. 

It should be pointed out that the prologues are useful only if they are kept consistent 
with the logic of the module. If the module is modified, then the prologue should 
also be modified, if necessary. A prologue that is inconsistent with the internal 
logic of the module is probably worse than no prologue at all. 

8.1.6 Law of Demeter for 00 Programs 

Much of the pryceding discussion implicitly assumed that the implementation lan
guage is procedural. As most of the code in a c1ass is in the methods of the c1ass and 
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methods can be treated as functions or procedures, most of the principles discussed 
hold for object-oriented programming (OOP) also. Guidelines for structured pro
gramming and programming style regarding nesting, user-defined types, names, 
and so on. should be followed while writing code for methods for developing 
readable object-oriented programs. 

However, even though most of the code in a dass resides in its methods, a dass 
is not just its methods. And though by using good methods to develop functions 
and procedures we can ensure that each method is written properly, this does not 
ensure that the overall dass, as a unit, is properly developed. In OOP, a dass is 
the basic unit, so some additional guidelines for the dass as a whole will be useful 
for the programmer. Here we present one such guideline called the law oJ demeter 
[LH89]. 

The primary goal of 00 programming is the same as for function-oriented pro
gramming: readability. That is, readability or comprehensibility of the programs 
is the foremost criteria for judging the program quality. In an object-oriented pro
gram, an object may interact with other objects by sending messages (as defined 
in its c1ass definition). As can be imagined, the more message passing between ob
jects and the more indirect the message passing, the harder it will be to understand 
the c1ass. Hence, the law of demeter tries to restrict the message sending structures 
in a c1ass by stipulating that a method of a c1ass send messages only to a limited 
set of objects. By doing this, the dependency between different c1asses is reduced, 
thereby making comprehending or modifying a c1ass easier. 

Let us give a few definitions first [LH89]. A method M is a client of a c1ass C if 
within M a message is sent to some object of c1ass C. The c1ass C is then called 
a supplier class. That is, a c1ass C is a supplier to a method M if its methods are 
called from M. A c1ass C is an acquaintance class to a method M (of a c1ass C') 
if C is a supplier to M and C is neither the c1ass of an argument of M nor the 
c1ass of an instance variable dec1ared within C' (or its ancestors). In other words, 
the set of acquaintance c1asses of a method M is the set of those c1asses whose 
objects M sends messages to, but which are not the c1ass of an argument of M 
and are not the c1ass of an instance variable of the c1ass to which M belongs. A 
preJerred-acquaintance class of a method M is a supplier c1ass of M that is either 
the c1ass of an object created directly in M or the c1ass of aglobai object used in M. 
As can be c1early seen, the set of preferred-acquaintance c1asses will be a sub set of 
the set of acquaintance c1asses. A c1ass C is preJerred-supplier class to a method 
M (of c1ass C') if Cis the c1ass of an instance variable of C' (or its ancestor) or if 
C is the c1ass of an argument of M or C is a preferred acquaintance of M. 

We can now state the law of demeter. The law comes in a few different forms. The 
minimization form of the law is [LH89]: 

Minimize the number oJ acquaintance classes over all methods. 
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According to this law, it is desirable to have a method M send messages to a dass 
that is either the dass of a parameter of M or is dass of an instance variable of 
the dass to which M belongs. In other words, if the method M is invoked on an 
object 0 (of dass C), it is most desirable that M sends messages to another object 
0' only if 0' is a parameter that is passed to M or if 0' is dedared within C. All 
other forms of access, represented by acquaintance dasses, should be rninimized. 

Let us see why access to acquaintance dasses is not desirable. The most common 
ways by which a dass C can become an acquaintance dass are (1) C is a friend 
dass, (2) C is the dass of an object created within M and hence the object is 
accessible from M, or (3) C is the dass of a global object accessible to M. In the 
first approach, a dass that is dedared as a friend can access all the intemals of 
the dedaring dass, induding the private features. This is dearly undesirable, as 
it violates the fundamental property of encapsulation that objects support and that 
is one of the major strengths of object-oriented approaches. In the second form, 
an object is created within M and is then accessed. Either this object dies when 
the method M terminates or it stays alive to be used later by other objects. In the 
latter case, we have a situation where a local variable of a method is being used by 
other objects-something that is dearly undesirable as it violates common scope 
rules, and is likely to make understanding the programs much more difficult. The 
third form has the same drawback as global variables: they are accessible to all 
and hence are potentially coupled with all. It should be dear that it is desirable to 
minimize these forms of interaction, as suggested by the law of demeter. 

Now let us look at the two forms of interaction recommended by the law. The first 
form is that the object is passed as a parameter. This is consistent with the approach 
proposed in function-oriented approaches; all variables on which a function acts 
should be passed as parameters. This makes the interface of the object dear and 
explicit, which makes comprehension easier. The second form is where an object 
is dedared in the dass and then accessed by the methods. The instance variables 
in a dass are declared so that they can be shared by the different operations on the 
object. This is just an extension of this view, saying that objects to be accessed by 
a method should be declared as instance variables so that they are reftected in the 
state of the objects. 

The implementation of this law requires that we be able to count the number of 
acquaintance dasses for each method. It is possible to do this at compi1e time if 
acquaintance classes are explicitly declared (e.g., friends in C++). The second form 
of this law is the strict version, which is: 

All methods may have only preferred supplier classes. 

Strict form isessentially saying that all interactions must be to the preferred sup
pliers only. The common ways a class C can become a preferred supplier for a 
method M in C,' are: (1) C is the class of an instance variable dedared in C', (2) 
Cis the class of a parameter passed to M, (3) Cis the type of local object to M 
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created within M, (4) Cis the type of global object, and (5) C and C' are the same 
and M sends a message to itself. The strict form of the law says that only these 
five methods of interaction with a dass should be used. Other forms of interaction 
(e.g., throughfriends) should not be used. Taken together, the two forms seem to 
suggest that the first two forms of interaction are the most prefeITed, though the 
latter three are also acceptable. 

8.2 Verification 

Verification of the output of the coding phase is primarily intended for detecting 
eITors introduced during this phase. That is, the goal of verification of the code 
produced is to show that the code is consistent with the design it is supposed to 
implement. It should be pointed out that by verification we do not mean proving 
COITectness of programs, which for our purposes is only one method for program 
verification. 

Program verification methods fall into two categories-static and dynamic meth
ods. In dynamic methods the program is executed on some test data and the outputs 
ofthe program are examined to determine ifthere are any eITors present. Hence, dy
namic techniques follow the tradition al pattern of testing, and the common notion 
of testing refers to this technique. 

Static techniques, on the other hand, do not involve actual program execution on 
actual numeric data, though it may involve some form of conceptual execution. 
In static techniques, the program is not compiled and then executed, as in testing. 
Common forms of static techniques are program verification, code reading, code 
reviews and walkthroughs, and symbolic execution. In static techniques often the 
eITors are detected directly, unlike dynamic techniques where only the presence 
of an eITor is detected. This aspect of static testing makes it quite attractive and 
economical. 

It has been found that the types of eITors detected by the two categories of verifi
cation techniques are different. The type of eITors detected by static techniques are 
often not found by testing, or it may be more cost-effective to detect these eITors 
by static methods. Consequently, testing and static methods are complimentary in 
nature, and both should be used for reliable software. 

8.2.1 Code Reading 

Code reading involves careful reading of the code by the programmer to detect any 
discrepancies between the design specifications and the actual implementation. 
It involves determining the abstraction of a module and then comparing it with 
its specifications. The process is the reverse of design. In design, we start from an 
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abstraction and move toward more details. In code reading we start from the details 
of a program and move toward an abstract description. 

The process of code reading is best done by reading the code inside-out, starting 
with the innermost structure of the module. First determine its abstract behavior 
and specify the abstraction. Then the higher-Ievel structure is considered, with 
the inner structure replaced by its abstraction. This process is continued until we 
reach the module or program being read. At that time the abstract behavior of the 
programlmodule will be known, which can then be compared to the specifications 
to determine any discrepancies. 

Code reading is very useful and can detect errors often not revealed by testing. 
Reading in the manner of stepwise-abstraction also forces the programmer to code 
in a manner conducive to this process, which leads to well-structured programs. 
Code reading is sometimes called desk review. 

8.2.2 Static Analysis 

Analysis of programs by methodically analyzing the program text is called static 
analysis. Static analysis is usually performed mechanically by the aid of software 
tools. During static analysis the pro gram itself is not executed, but the program text 
is the input to the tools. The aim of the static analysis tools is to detect errors or 
potential errors or to generate information about the structure of the program that 
can be useful for documentation or understanding of the pro gram. Different kinds 
of static analysis tools can be designed to perform different types of analyses. 

Many compilers perform some limited static analysis. More often, tools explicitly 
for static analysis are used. Static analysis can be very useful for exposing errors 
that may escape other techniques. As the analysis is performed with the help of 
software tools, static analysis is a very cost-effective way of discovering errors. An 
advantage is that static analysis sometimes detects the errors themselves, not just 
the presence of errors, as in testing. This saves the effort of tracing the error from 
the data that reveals the presence of errors. Furthermore, static analysis can provide 
"wamings" against potential errors and can provide insight into the structure of 
the program. It is also useful for deterrnining violations of local programming 
standards, which the standard compilers will be unable to detect. Extensive static 
analysis can considerably reduce the effort later needed during testing. 

Data flow analysis [F078] is one form of static analysis that concentrates on the uses 
of data by programs and detects some data flow anomalies. Data flow anomalies 
are "suspicious" use of data in a program. In general, data flow anomalies are 
technically not errors, and they may go undetected by the compiler. However, they 
are often a symptom of an error, caused due to carelessness in typing or error in 
coding. At the very least, presence of data flow anomalies implies poor coding. 
Hence, if a program has data flow anomalies, it is a cause of concern, which should 
be properly addressed. 
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x = a; 

x does not appear in ~y right hand side 

x = b; 

FIGURE 8.2. A code segment. 

An example of the data flow anomaly is the live variable problem, in which a 
variable is assigned some value but then the variable is not used in any later com
putation. Such a live variable and assignment to the variable are c1early redundant. 
Another simple example of this is having two assignments to a variable without 
using the value ofthe variable between the two assignments. In this case the first as
signment is redundant. For example, consider the simple case of the code segment 
shown in Figure 8.2. 

Clearly, the first assignment statement is useless. The question is why is that state
ment in the program? Perhaps the programmer meant to say y : = bin the second 
statement, and mistyped y as x. In that case, detecting this anomalyand direct
ing the programmer's attention to it can save considerable effort in testing and 
debugging. 

In addition to revealing anomalies, data flow analysis can provide valuable in
formation for documentation of programs. For example, data flow analysis can 
provide information about which variables are modified on invoking a procedure 
in the caller program and the value of the variables used in the called procedure 
(this can also be used to make sure that the interface ofthe procedure is minimum, 
resulting in lower coupling). This analysis can identify aliasing, which occurs when 
different variables represent the same data object. This information can be useful 
during maintenance to ensure that there are no undesirable side effects of some 
modifications to a procedure. 

Other examples of data flow anomalies are unreachable code, unused variables, and 
unreferenced labels. Unreachable code is that part ofthe code to which there is not a 
feasible path; there is no possible execution in which it can be executed. Technically 
this is not an eITor, and a compiler will at most generate a warning. The program 
behavior during execution mayaIso be consistent with its specifications. However, 
often the presence of unreachable code is a sign of lack of proper understanding 
of the program by the programmer (otherwise why would a programmer leave 
the unreachable code), which suggests that the presence of eITor's is likely. Often, 
unreachable code comes into existence when an existing pro gram is modified. In 
that situation unreachable code may signify undesired or unexpected side effects of 
the modifications. Unreferenced labels and unused variables are like unreachable 
code in that tqey are technically not errors, but often are symptoms of eITors; thus 
their presenceoften implies the presence of eITors. 
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Data flow analysis is usually performed by representing a program as a graph, 
sometimes called the flow graph. Tbe nodes in a flow graph represent statements 
of a prograrn, while the edges represent control paths from one statement to another. 
Correspondence between the nodes and statements is maintained, and the graph 
is analyzed to determine different relationships between the statements. By use 
of different algorithms, different kinds of anomalies can be detected. Many of the 
algorithms to detect anomalies can be quite complex and require a lot of processing 
time. For example, the execution time of algorithrns to detect unreachable code 
increases with the square of the number of nodes in the graph. Consequently, this 
analysis is often limited to modules or to a collection of same modules and is rarely 
performed on complete systems. 

To reduce processing times of algorithms, the search of a flow graph has to be 
carefully organized. Another way to reduce the time for executing algorithms is to 
reduce the size of the flow graph. Flow graphs can get extremely large for large 
programs, and transformations are often performed on the flow graph to reduce their 
size. Tbe most common transformation is to have each node represent a sequence 
of contiguous statements that have no branches in them, thus representing a block 
of code that will be executed tagether. Another transformation often done is to 
have each node represent a procedure or function. In that case, the resulting graph 
is often called the caU graph, in which an edge from one node n to another node 
m represents the fact that the execution of the module represented by n directly 
invokes the module m. 

Other Uses 0/ Static Analysis 

We have seen that data flow analysis is a technique for statically analyzing a 
program to reveal same types of anomalies. Other forms of static analysis to detect 
different errors and anomalies can also be performed. Here we list some of the 
other common uses of static analysis tools. 

An error often made, especially when different teams are developing different 
parts of the software, is mismatched parameter lists, where the argument list of a 
module invocation is different in number or type from the parameters of the invoked 
module. This can be detected by a compiler if no separate compilation is allowed 
and the entire program text is available to the compiler (as is the case with standard 
Pascal). However, if the programs are separately developed and compiled, which 
is almost always the case with large software developments, this error will not be 
detected. A static analyzer with access to the different parts of the program can 
easily detect this error. Such errors can also be detected during code review, but 
it is more economical to do it mechanically. An extension of this is to detect calls 
to nonexistent program modules. Essentially, the interfacing of different modules, 
developed and compiled separately, can be checked for mutual consistency easily 
through static analysis. In some limited cases, static analysis can also detect infinite 
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er petentially infinite leeps, and illegal recursion (e.g., no termination condition 
for recursion). 

There are different kinds of documents that static analyzers can produce, which 
can be useful for maintenance or increased understanding of the program. The first 
is the cross-reference of where different variables and constants are used. Often, 
looking at the cross-reference can help one detect subtle errors, like many constants 
defined (with perhaps somewhat different values) to represent the same entity. For 
example, the value of pi could be defined as constant in different routines with 
slightly different values. Areport with cross-references can be useful to detect 
such errors. To reduce the size of such reports, it may be more useful to limit it to 
the use of constants and global variables. 

Information about the frequency of use of different constructs of the programming 
language can also be obtained by static analyses. Such information is useful for 
statistical analysis of programs, such as what types of modules are more prone 
to defect. Another use is to evaluate the complexity. There are some complexity 
measures that are a function of the frequency of occurrence of different types of 
statements. To determine complexity from such measures, this information can be 
useful. 

Static analysis can also produce the structure chart of programs. The actual structure 
chart of a system is a useful documentation aid.1t can also be used to determine the 
changes made in design during the coding phase by comparing it to the structure 
chart produced during system design. A static nesting hierarchy of procedures can 
also be easily produced by static analysis. 

There are some coding restrictions that the programming language imposes. How
ever, different organizations may have further restrictions on the use of differ
ent language features for reliability, portability, or efficiency reasons. Examples 
of these include mixed type arithmetic, type conversion, using features that are 
machine-dependent, and too many gotos. Such restrictions cannot be checked by 
the compiler, but static analysis can be used to enforce these standards. Such vio
lations can also be checked in code review, but it is more efficient and economical 
to let a program do this checking. 

8.2.3 Symbolic Execution 

In the last section we considered techniques in which the program text is scanned to 
determine possible errors. In this section we will consider another approach where 
the pro gram is not executed with actual data. Instead, the pro gram is "symbolically 
executed" with symbolic data. Hence the inputs to the program are not numbers but 
symbols representing the input data, which can take different values. The execution 
of the program proceeds like normal execution, except that it deals with values that 
are not numbers but formulas consisting of the symbolic input values. The outputs 
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are symbolic formulas of input values. These formulas can be checked to see if the 
program will behave as expected. This approach is called by different names like 
symbolic execution, symbolic evaluation, and symbolic testing [CHT79, Cla76, 
How77, Kin76]. 

Although the concept is simple and promising for verifying programs, we will see 
that performing symbolic-execution of even modest-size pro grams is very difficult. 
The problems basically co me due to the conditional execution of statements in pro
grams. As conditions of a symbolic expression cannot usually be evaluated to true 
or false without substituting actual values for the symbols, a case-by-case analysis 
becomes necessary, and an possible cases with a condition have to be considered. 
In programs with loops, this can result in an unmanageably large number of cases. 

To introduce the basic concepts of symbolic execution, let us first consider a simple 
program without any conditional statements. A simple pro gram to compute the 
product of three positive integers is shown in Figure 8.3. 

Let us consider that the symbolic inputs to the function are xi, yi, and zi. We start 
executing this function with these inputs. The aim is to determine the symbolic 
values of different variables in the pro gram after "executing" each statement, so 
that eventually we can determine the result of executing this function. The trace of 
the symbolic execution of the function is shown in Figure 8.4. 

After statement 6, the value of the product is (xi*yi*)*(yi*zi)/yi. Because this is 
a symbolic value, we can simplify this formula. Simplification yields product = 
xi * yi 2d * zi Iyi = xi * yi * zi, the desired result. In this simple example, there is 

1. function product (x, y, z: integer): integer; 
2. var tmp 1, tmp2: integer; 
3. begin 
4. tmpl := x*y; 
5. tmp2:= y*z; 
6. product := tmp I *tmp2/y; 
7. end; 

FIGURE 8.3. Function to determine product. 

After 
Values of the Variables 

Statement x y z tmpl tmp2 Product 

xi yi zi ? ? ? 
4 xi yi Zl xi*yi ? ? 
5 xi yi zi xi*yi yi*zi ? 
6 xi yi zi xi*yi yi*zi (xi *yi)*(yi * zi)/yi 

FIGURE 8.4. Symbolic execution of the function product. 
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only one path in the function, and this symbolic execution is equivalent to checking 
for all possible values of x, y, and z. (Note that the implied assumption is that input 
values are such that the machine will be able to perform the product and no overflow 
will occur.) Essentially, with only one path and an acceptable symbolic result, we 
can claim that the pro gram is correct. 

Path Conditions 

In symbolic execution, when dealing with conditional execution, it is not sufficient 
to look at the state of the variables of the program at different statements, as a 
statement will only be executed if the inputs satisfy certain conditions in which the 
execution of the program will follow a path that includes the statement. To capture 
this concept in symbolic execution, we require a notion of "path condition." Path 
condition at a statement gives the conditions the inputs must satisfy for an execution 
to follow the path so that the statement will be executed. 

Path condition is a Boolean expression over the symbolic inputs that never con
tains any pro gram variables. It will be represented in a symbolic execution by pc. 
Each symbolic execution begins with pc initialized to true. As conditions are en
countered, for different cases referring to different paths in the program, the path 
condition will take different values. For example, symbolic exeeution of an if 
statement of the form 

if ethen 81 else 82 

will require two eases to be considered, corresponding to the two possible paths; 
one where C evaluates to true and SI is executed, and the other where C evaluates 
to false and S2 is exeeuted. For the first case we set the path condition pe to 

pe +- pe /\ C 

which is the path eondition for the statements in SI. For the second ease we set the 
path eondition to 

pe +- pe/\ ~ C 

which is the path condition for statements in S2. 

On eneountering the if statement, symbolic exeeution is said to fork into two exe
eutions: one following the then part, the other following the else part. Both these 
paths are independently exeeuted, with their respective path conditions. However, 
if at any if statement we ean show that pe implies C or ~C, we do not need to 
follow both paths, and only the relevant path need be exeeuted. Such an if state
ment is a nonforking conditional statement eompared to the former case, which is 
a forking eonditional statement. 

Let us eonsider an example involving if statements. Figure 8.5 shows a program 
to determine the maximum of three numbers. The trace of the symbolic exeeution 
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1. function max ( x, y, x: integer ): integer; 
2. begin 
3. ifx::::ythen 
4. max :=y 
5. else 
6. max :=x; 
7. ifmax < z then 
8. max :=z; 
9. end; 

FIGURE 8.5. The code for function max. 

Stmt pe max 

1. true ? 
Case (x> y) 
2. (xi> yi) ? 
3. xi 

case (max < z) 
4. (xi>yi) 1\ (xkzi) zi 

return this value of max 
case (max ::: z) 

4. (xi>yi) 1\ (xi::::zi) xi 
return this value of max 

Case (x:::: y) 
Similar to the above. 

FIGURE 8.6. Symbolic execution of the 
function max. 

of this program is shown in Figure 8.6. As before, we assurne that the symbolic 
inputs of the variables x, y, and z are xi, yi, and zi respectively. 

Notice how at each if statement the symbolic execution forked into two cases, with 
each case having a different path condition. There are a total of four paths in this 
symbolic execution. We can see that for each path, the value returned is consistent 
with the specifications of the program. For example, when the inputs satisfy the 
condition zi>xi>yi, the value zi is the maximum, which is what is returned in 
symbolic execution. Similarly, we can check other paths. 

Loops and Symbolie Exeeution Trees 

The different paths followed during symbolic execution can be represented by an 
"execution tree." Anode in this tree represents the execution of astatement, while 
an arc represents the transition from one statement to another. For each if statement 
where both the paths are followed, there are two arcs from the node corresponding 
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FIGURE 8.7. Execution tree for the function max 

to the if statement, one labeled with T (true) and the other with F (false), for the 
then and else paths. At each branching, the path condition is also often shown in 
the tree. Note that the execution tree is different from the ftow graph of a program, 
where nodes represent astatement, while in the execution tree nodes represent the 
execution of a statement. The execution tree of the program discussed earlier is 
shown in Figure 8.7. 

The execution tree of a program has some interesting properties. Each leaf in the 
tree represents a path that will be followed for some input values. For each terminal 
leaf there exists some actual numerical inputs such that the sequence of statements 
executed with these inputs is the same as the sequence of statements in the path from 
the root of the tree to the leaf. An additional property of the symbolic execution 
tree is that path conditions associated with two different leaves are distinct. Thus 
there is no execution for which both path conditions are true. This is due to the 
property of sequential programming languages that in one execution we cannot 
follow two different paths. 

If the symbolic output at each leaf in the tree is correct, it is equivalent to saying 
that the pro gram is correct. Hence, if we can consider all paths, the correctness of 
the program can be established by symbolic execution. However, even for modest
size program~ the tree can be infinite. The infinite trees result from the presence of 
loops in the programs. 
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Because of the presence of infinite execution trees, symbolic execution should not 
be considered a tool for proving COITectness of programs. A program to perform 
symbolic execution may not stop. Fm this reason, a more practical approach is to 
build tools where only some of the paths are symbolically executed, and the user 
can select the paths to be executed. One must selectively execute some paths, as 
all cannot be executed. 

A symbolic execution tool can also be useful in selecting test cases to obtain 
branch or statement coverage (discussed in the next chapter). Suppose that results 
of testing reveal that a certain path has not been executed, and it is desired to test 
that path. To execute a particular path, input test data has to be carefully selected 
to ensure that the given path is indeed executed. Selecting such test cases can often 
be quite difficult. A symbolic execution tool can be useful here. By symbolically 
executing that particular path, the path condition for the leaf node for that path can 
be determined. The input test data can then be selected using this path condition. 
The test case data that will execute the path are what will satisfy the path condition. 

8.2.4 Proving Correctness 

Many techniques for verification aim to reveal eITors in the programs, because 
the ultimate goal is to make pro grams COITect by removing the eITors. In proof of 
cOITectness, the aim is to prove a program COITect. So, COITectness is direct1y estab
lished, unlike the other techniques in which COITectness is never really established 
but is implied (and hoped) by the absence of detection of any eITors. Proofs are 
perhaps more valuable during pro gram construction, rather than after the program 
has been constructed. Proving while developing a program may result in more re
liable pro grams that can be proved more easily. Proving a program not constructed 
with formal verification in mind can be quite difficult. 

Any proof technique must begin with a formal specification of the program. No 
formal proof can be provided if what we have to prove is not stated or is stated 
informally in an imprecise manner. So, first we have to state formally what the 
program is supposed to do. A pro gram will usually not operate on an arbitrary set 
of input data and may produce valid results only for some range of inputs. Hence, 
it is often not sufficient merely to state the goal of the program, but we should also 
state the input conditions in which the program is to be invoked and for which the 
program is expected to produce valid results. The assertion about the expected final 
state of a program is called the post-condition of that program, and the assertion 
about the input condition is called the pre-condition of the pro gram. We discussed 
this form of specification in Chapter 7. Often, determining the pre-condition for 
which the post-condition will be satisfied is the goal of proof. Here we will briefty 
describe a technique for proving COITectness called the axiomatic method, which 
was proposed by Hoare [Hoa69]. It is often also called the Floyd-Hoare prooj 
method, as it is based on Floyd's inductive assertion technique. 



www.manaraa.com

8.2. Verification 379 

The Axiomatic Approach 

In principle, all the properties of a program can be deterrnined statically from the 
text of the program, without actually executing the program. The first requirement 
in reasoning about programs is to state formally the properties of the elementary 
operations and statements that the program uses. In the axiomatic model of Hoare 
[Hoa69], the goal is to take the program and construct a sequence of assertions, 
each of which can be inferred from previously proved assertions and the mIes 
and axioms about the statements and operations in the program. For this, we need 
a mathematical model of a program and all the constructs in the programming 
language. Using Hoare's notation, the basic assertion about a program segment is 
ofthe form: 

P{S}Q. 

The interpretation of this is that if assertion P is true before executing S, then as
sertion Q will be true after executing S, if the execution of S terminates. Assertion 
P is the pre-condition of the pro gram and Q is the post-condition. These assertions 
are about the values taken by the variables in the program before and after its exe
cution. The assertions generally do not specify a particular value for the variables, 
but they specify the general properties of the values and the relationships among 
them. 

To prove a theorem of the formP{S}Q, we need some mIes and axioms about 
the programming language in which the program segment S is written. Here we 
consider a simple programming language, which deals only with integers and has 
the following types of statements: (1) assignment, (2) conditional statement, and 
(3) an iterative statement. A program is considered a sequence of statements. We 
will now discuss the mIes and axioms for these statements so that we can combine 
them to prove the correctness of programs. 

Axiom of Assignment: Assignments are central to procedural languages. In our 
language no state change can be accomplished without the assignment statement. 
The axiom of assignment is also central to the axiomatic approach. In fact, only 
for the assignment statement do we have an independent axiom; for the rest of the 
statements we have mIes. Consider the assignment statement of the form 

x:= f 

where x is an identifier and f is an expression in the programming language without 
any side effects. Any assertion that is true about x after the assignment must be 
true of the expression f before the assignment. In other words, because after the 
assignment the variable x contains the value computed by the expression f, if 
a condition is true after the assignment is made, then the condition obtained by 
replacing x by f must be true before the assignment. This is the essence of the 
axiom of assignment. The axiom is stated next 

P}{x:= f}P 
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P is the post-condition of the program segment containing only the assignment 
statement. The pre-condition is PJ, which is an assertion obtained by substituting 
/ for all occurrences of x in the assertion P. In other words, if PJ is true before 
the assignment statement, P will be true after the assignment. 

This is the only axiom we have in Hoare's axiomatic model besides the standard 
axioms about the mathematical operators used in the language (such as commuta
tivity and associativity of the + operator). The reason that we have only one axiom 
for the assignment statement is that this is the only statement in our language that 
has any effect on the state of the system, and we need an axiom to define what the 
effect of such a statement iso The other language constructs, like alternation and 
iteration, are for f10w control, to determine which assignment statements will be 
executed. For such statements rules of inference are provided. 

Rule of Composition: Let us first consider the rule for sequential composition, 
where two statements SI and S2 are executed in sequence. This rule is called ruZe 
0/ composition, and is shown next: 

P{ Sl}Q, Q{S2}R 

P{Sl; S2}R 

The explanation of this notation is that if what is stated in the numerator can 
be proved, the denominator can be inferred. Using this rule, if we can prove 
P{Sl}Q and Q{S2}R, we can claim that if before execution the pre-condition P 
holds, then after execution of the program segment Sl;S2 the post-condition R 
will hold. In other words, to prove P{S 1 ;S2}R, we have to find some Q and prove 
that P{Sl}Q and Q{S2}R. This rule is dividing the problem of determining the 
semantics of a sequence of statements into determining the semantics of individual 
statments. In other words, from the proofs of simple statements, proofs of pro
grams (i.e., sequence of statements) will be constructed. Note that the rule handies 
a strict sequence of statements onIy (recall the earlier discussion on structured 
programming.) 

Rule for Alternate Statement: Let us now consider the rules for an if statement. 
For formal verification, the entire if statement is treated as one construct, the 
semantics of which have to be determined. This is the way in which other structured 
statements are also handled. There are two types of if statement, one with an else 
clause and one without. The rules for both are given next: 

PA B{S}Q, PA ~ B:=} Q 

P{ifB then S}Q 
PA B{SI} Q, PA B{S2}Q 

P{ifB then SI else S2}Q 

Let us consider the if-then-else statement. We want to prove a post-condition for 
this statement. However, depending on the evaluation ofB, two different statements 
can be executed. In both cases the post-condition must be satisfied. Hence if we 
can show that starting in the state where P /\ B is true and executing SI or starting 
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in astate where P /\ '" B is true and executing the statement S2, both lead to the 
post-condition Q, then the following can be inferred: if the if-then-else statement 
is executed with pre-condition P, the post-condition Q will hold after execution of 
the statement. Similarly, for the if-then statement, if B is true then S is executed; 
otherwise the control goes straight to the end of the statement. Hence, if we can 
show that starting from astate where P /\ B is true and executing S leads to astate 
where Q is true and before the if statement if P /\ '" B implies Q, then we can say 
that starting from P before the if statement we will always reach astate in which 
Q is true. 

Rules of Consequence: To be able to prove new theorems from the ones we have 
already proved using the axioms, we require some rules of inference. The simplest 
inference rule is that if the execution of a program ensures that an assertion Q is true 
after execution, then it also ensures that every assertion logically implied by Q is 
also true after execution. Similarly, if a pre-condition ensures that a post-condition 
is true after execution of a program, then every condition that logically implies the 
pre-condition will also ensure that the post-condition holds after execution of the 
program. These are called rules of consequence, and they are formally stated here: 

P{S}R, R '* Q 

P{S}Q 

P '* R, R{S}Q 

P{S}Q 

Rule of Iteration: 

Now let us consider iteration. Loops are the trickiest construct when dealing with 
program proofs. We will consider only the while loop of the form while B da 
S. We have to determine the semantics of the whole construct. 

In executing this loop, first the condition B is checked. If B is false, S is not executed 
and the loop terminates. If B is true, S is executed and B is tested again. This is 
repeated until B evaluates to false. We would like to be able to make an assertion 
that will be true when the loop terminates. Let this assertion be P. As we do not 
know how many times the loop will be executed, it is easier to have an assertion that 
will hold true irrespective ofhow many times the loop body is executed. In that case 
P will hold true after every execution of statement S, and will be true before every 
execution of S, because the condition that holds true after an execution of S will be 
the condition for the next execution of S (if S is executed again). Furthermore, we 
know that the condition B is false when the loop terminates and is true whenever 
S is executed. These properties have been used in the rule for iteration: 

P /\ B{S}P 

P{while B do S}P/\ '" B 

As the condition P is unchanging with the execution of the statements in the loop 
body, it is called the loop invariant. Finding loop invariants is the thomiest problem 
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in constructing proofs of correctness. One method for getting the Ioop invariant 
that often works is to extract "'B from the post-condition of the loop and try the 
remaining assertion as the Ioop invariant. Another method is to try replacing the 
variable that binds the loop execution with the loop counter. Thus if the loop has 
a counter i, which goes from 0 to n, and if the post-condition of the loop contains 
n, then replace n by i and try the assertion as a loop invariant. 

An Example 

Although in a theorem of the form P {S} Q, we say that if P is true at the start and 
the execution of S terminates, Q will be true after executing S, to prove a theorem 
of this sort we work backwards. That is, we do not start with the pre-condition; we 
work our way to the end of the pro gram to determine the post-condition. Instead 
we start with the post-condition and work our way back to the start of the program, 
and determine the pre-condition. We use the axiom of assignment and other roles 
to determine the pre-condition of a statement for a given post-condition. If the pre
condition we obtain by doing this is implied by P, then by rules of consequence we 
can say that P{S}Q is a theorem. Let us consider a simple example of determining 
the remainder in integer division, by repeated subtraction. The program is shown 
in Figure 8.8. 

The pre-condition and post-condition of tbis program are given as 

p = {x ::.: 0/\ Y > O} 

Q = {x = qy + r /\ 0 sr< y} 

We have to prove that P {Program} Q is a theorem. We start with Q. The first 
statement before the end of the program is the Ioop. We invent the loop invariant 
by removing ",B from the Q, which is also the output assertion of the Ioop. For 
this we factor Q into a form like 1/\ "'B, then choose I as the invariant. For this 
pro gram we have '" B = {r < y}, and Q = {x = qy + r /\ 0 S r /\ r < y}, hence 
our trial invariant I is {x = qy + r /\ 0 sr}. 

(* Remainder of xly *) 
1. begin 
2. q :=0; 
3. r :=x; 
4. while r::,: y do 
5. begin 
6. r:= r - y; 
7. q:= q + 1 ; 
8. end; 
9. end. 

FIGURE 8.8. Program to determine the remainder. 
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Let us now see if this invariant is appropriate for this loop, that is, starting with this, 
we get a pre-condition of the form / /\ B. Starting with I, we use the assignment 
axiom and the pre-condition for statement 7 is 

x = (q + l)y + r /\ 0::: r{q := q + 1}/ 

Using the assignment axiom for statement 6, we get the pre-condition for 6 as 

x = (q + l)y + (r - y) /\ 0 ::: (r - y), 

which is the same as x = qy + r /\ y ::: r. Using the rule of composition (for 
statements 6 and 7), we can say 

x = qy +r /\ y ::: r{r:= r - y;q := q + 1}/. 

Because x = q y + r /\ y ::: r => / /\ B, by rule of consequence and the rule for the 
while loop, we have 

/{while loop in program}I/\ ~ (r :::: y) 

where I is x = qy + r /\ 0 ::: r. 

Now let us consider the statements before the loop (i.e., statements 2 and 3). The 
post-condition for these statements is I. Using the axiom of assignment, we first 
replace r with x, and then we replace q with 0 to get 

(x = x /\ 0 ::: x) => (0 ::: x). 

By composing these statements with the while statement, we get 

o ::: x{the entire program} / /\ ~ B. 

Because, (//\ ~ B) is the post-condition Q of the pro gram and O:::x is the pre
condition, we have proved the pro gram to be correct. 

Discussion 

In the axiomatic method, to prove P{S}Q, we assume that S will terminate. So, 
by proving that the program will produce the desired post-condition using the 
axiomatic method, We are essentially saying that ifthe program terminates, it will 
provide the desired post-condition. The axiomatic proof technique cannot prove 
whether or not a program terminates. For this reason, the proof using the axiomatic 
technique is called the proof of partial correctness. 

This is in contrast to the proof of total correctness, where termination of a program 
is also proved. Termination of programs is of considerable interest for obvious 
reason of avoiding infinite loops. With the axiomatic method, additional techniques 
have to be used to prove termination. One common method is to define a well
ordered set that has a smallest member and then add an expression to the assertions 
that produce~ a value in the set. If after an execution of the loop body, it can be 
shown that the value of the expression is less than it was on the entry, then the loop 
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must terminate. There are other methods of proving correctness that aim to prove 
total correctness. 

Proofs of correctness have obvious·theoretical appeal and a considerable body of 
literature exists in the area. Despite this, the practical use of these formal methods 
of verification has been limited. In the software development industry proving 
correctness is not generally used as a means of verification. Their use, at best, is 
limited to proving correctness of some critical modules. 

There are many reasons for the lack of general use of formal verification. Con
structing proofs is quite hard, and even for relatively modest problems, proofs can 
be quite large and difficult to comprehend. As much of the work must be done man
ually (even if theorem provers are available), the techniques are open to clerical 
errors. In addition, the proof methods are usually limited to proving correctness of 
single modules. When procedures and functions are used, constructing proofs of 
correctness becomes extremely hard. In essence, the technique of proving correct
ness does not scale up very weIl to large programs. Despite these shortcomings, 
proof techniques offer an attractive formal means for verification and hold promise 
for the future. 

8.2.5 Code Inspections or Reviews 

The review process was started with the purpose of detecting defects in the code. 
Though design reviews substantially reduce defects in code, reviews are still very 
useful and can considerably enhance reliability and reduce effort during testing. 
Code reviews are designed to detect defects that originate during the coding process, 
although they can also detect defects in detailed design. However, it is unlikely that 
code reviews will reveal errors in system design or requirements. 

Code inspections or reviews are usually held after code has been successfully 
completed and other forms of static tools have been applied but before any testing 
has been performed. Therefore, activities like code reading, symbolic execution, 
and static analysis should be performed, and defects found by these techniques 
corrected before code reviews are held. The main motivation for this is to save 
human time and effort, which would otherwise be spent detecting errors that a 
compiler or static analyzer can detect. In other words, the entry criteria for code 
review is that the code must compile successfully and has been "passed" by other 
static analysis tools. 

The documentation to be distributed to the review team members includes the code 
to be reviewed and the design document. The review team for code reviews should 
include the programmer, the designer, and (he tester. The review starts with the 
preparation for the review and ends with a list of action items. We discussed the 
general method for conducting reviews in Chapter 3. 
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The aim of reviews is to detect defects in code. One obvious coding defect is that 
the code fails to implement the design. This can occur in many ways. The function 
implemented by a module may be different from the function actually defined in 
the design or the interface of the modules may not be the same as the interface 
specified in the design. In addition, the input-output format assumed by a module 
may be inconsistent with the format specified in the design. 

Other code defects can be divided into two broad categories: logic and control and 
data operations and computations. Some examples of logic and contral defects 
are infinite loops, unreachable code, incorrect predicate, missing or unreferenced 
labels, and impraper nesting of loops and branches. Examples of defects in co m
putation and data operations are missing validity tests for external data, incorrect 
access of array components, improper initialization, and misuse of variables. 

In addition to defects, there are quality issues, which the review also addresses. 
The first is efficiency. A module may be implemented in an obviously inefficient 
manner and could be wasteful of memory or the computer time. The code could 
also be violating the local coding standards. Although nonadherence to co ding 
standards cannot be classified as a defect, it is desirable to maintain the standard. 
Standards can have restrictions on annotations, internal documentation, use of 
global variables, use of recursion, naming of variables, maximum nesting of loops, 
and alternative constructs. 

A Sampie Checklist: The following are some of the items that can be included in 
achecklist for code reviews [Dun84]. 

• Do data definitions exploit the typing capabilities of the language? 

• Do all the pointers point to some object? (Are there any "dangling pointers"?) 

• Are the pointers set to NULL, where needed? 

• Are all the array indexes within bound? 

• Are indexes praperly initialized? 

• Are all the branch conditions correct (not too weak, not too strong)? 

• Will a loop always terminate (no infinite loops)? 

• Is the loop termination condition correct? 

• Is the number of loop executions "off by one"? 

• Where applicable, are the divisors tested for zero? 

• Are imported data tested for validity? 

• Do actual and formal interface parameters match? 

• Are all variables used? Are all output variables assigned? 

• Can statements placed in the loop be placed outside the loop? 

• Are the labels unreferenced? 

• Will the requirements of execution time be met? 
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8.3 Metries 

• Are the local coding standards met? 

8.2.6 Unit Testing 

All the methods discussed earlier are static methods in that the program is not 
compiled and executed. The program text was the input to these techniques and 
the text was evaluated and analyzed manually or with the aid of tools. Even sym
bolic execution is a static method where the program text is "executed." In fact, 
symbolic execution could be done manually; the use of a symbolic execution tool 
is essentially to eliminate the potentially cumbersome manual procedure. 

In contrast to these methods, unit testing is a dynamic method for verification, 
where the program is actually compiled and executed. It is one of the most widely 
used methods, and the coding phase is sometimes called the "coding and unit testing 
phase." As in other forms of testing, unit testing involves executing the code with 
some test cases and then evaluating the results. 

The goal of unit testing is to test modules or "units," not the entire software sys
tem. Other levels of testing are used to test the system. Unit testing is most often 
done by the programmer hirnself. The programmer, after finishing the coding of a 
module, tests it with some test data. The tested module is then delivered for system 
integration and further testing. 

Testing of modules or software systems is a difficult and challenging task. Selection 
of test cases and deciding how much testing is enough are two important aspects 
of testing. Unit testing is dealt with in the next chapter, after the fundamentals of 
testing and the selection of test cases have been discussed. 

Traditionally, work on metrics has focused on the final product, namely the code. 
In asense, all metrics for intermediate products of requirements and design are 
basically used to ensure that the final product has a high quality and the productivity 
of the project stays high. That is, the basic goal of metrics for intermediate products 
is to predict or get some idea about the metrics of the final product. For the code, the 
most commonly used metrics are size, complexity, and reliability. We will discuss 
reliability, in the next chapter as most reliability models use test data to assess 
reliability. Here we discuss a few size and complexity measures. 

8.3.1 Size Measures 

Size of a product is a simple measure, which can be easy to ca1culate. The main 
reason for interest in size measures is that size is the major factor that affects the 
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cost of a project. Size in itself is of little use; it is the relation of size with the 
cost and quality that makes size an important metric. At the end of the project, 
size is measured primarily to record·it, along with total cost, for future use. As we 
saw earlier, this type of data is used to determine the cost estimation models for a 
process. It is also used to measure productivity during the project. As mentioned 
earlier, a common measure of productivity is DLOC per person-month. When the 
coding is finished, size can also be to plan the testing activity for the project, as 
testing effort is also govemed by the size of the project. Final quality delivered 
by a process is also frequently normalized with respect to size. A commonly used 
approach to specify the quality being delivered by a process is to characterize the 
process by the number of defects per KLOC. For these reasons, size is one of the 
most important and frequently used metrics. At the end of the coding phase, the 
size of the project is likely to be very dose to the final delivered size. Hence, here 
the size is measured (as opposed to estimated). 

The most common measure of size is delivered lines of source code, or the number 
of lines of code (LOC) finally delivered. The trouble with LOC is that the number 
of lines of code for a project depends heavily on the language used. For example, a 
program written in assembly language will be large compared to the same pro gram 
written in a higher-level language, if LOC is used as a size measure. Even for the 
same language, the size can vary considerably depending on the programmer and 
other factors. What forms a line in determining the size is also not universally 
accepted and depends on the use of the size measure. For example, if we are 
interested in size to determine the total effort, then it might be reasonable to include 
comment and data lines. On the other hand, if we are interested in function size, it 
is better to include only the executable statements. Despite these deficiencies, LOC 
remains a handy and reasonable size measure that is used extensively. Currently, 
perhaps the most widely used counting method for determining the size is to count 
noncomment, nonblank lines only. 

Halstead [Hal77] has proposed metrics for length and volume of a pro gram based 
on the number of operators and operands. In a program we define the following 
measurable quantities: 

• nl is the number of distinct operators. 

• n2 is the I1umber of distinct operands. 

• !I,j is the number of occurrences of the p" most frequent operator. 

• h,j is the number of occurrences of the p" most frequent operand. 

Then the vocabulary n of a program is defined as 

With the measurable parameters listed earlier, two new parameters are defined: 

NI = L'fLj, N2 = L /2.j. 
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NI is the total occurrences of different operators in the program and N2 is the total 
occurrences of different operands. The length of the program is defined as 

N =NI +Nz. 

From the length and the vocabulary, the volume V of the program is defined as 

V = N log2(n). 

This definition of the volume of a pro gram represents the minimum number of 
bits necessary to represent the program. Logz(n) is the number of bits needed to 
represent every element in the program uniquely, and N is the total occurrences of 
the different elements. Volume is used as a size metric for a program. 

Experiments have shown that the volume of a program is highly correlated with 
the size in LOC. Some experiments have also shown that the volume metric has 
a very high correlation with the error-proneness of modules [MJ95], Le., in the 
experiments it was found that the modules in which the programmer had made 
more errors generally had a high volume. The same is true for the LOC measure. 
Overall, due to the high correlation, we can say that despite the theoretical appeal 
of volume as a size measure, for statistical studies it does not offer any strong 
advantages over the LOC measure. 

8.3.2 Complexity Metries 

The productivity, if measured only in terms of lines of code per unit time, can 
vary a lot depending on the complexity of the system to be developed. Clearly, 
a programmer will produce a lesser amount of code for highly complex system 
programs, as compared to a simple application pro gram. Similarly, complexity 
has great impact on the cost of maintaining a program. To quantify complexity 
beyond the fuzzy notion of the ease with which a program can be constructed or 
comprehended, some metrics to measure the complexity of a pro gram are needed. 

Some metrics for complexity were discussed in Chapter 7. The same metrics that are 
applicable to detailed design can be applied to code. One such complexity measure 
discussed in the previous chapter is cyclomatic complexity, in which thecomplexity 
of a module is the number of independent cyc1es in the f10w graph of the module. 
A number of mettics have been proposed for quantifying the complexity of a 
program [HMKD82], and studies have been done to correlate the complexity with 
maintenance effort. Here we discuss a few more complexity measures. Most of 
these have been proposed in the context of pro grams , but they can be applied or 
adapted for detailed design as weIl. 

Size Measures 

A complexity measure tries to capture the level of difficulty in understanding a 
module. In other words, it tries to quantify a cognitive aspect of a program. It 
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is weH known that, in general, the larger a module, the more difficult it is to 
comprehend. Hence, the size of a module can be taken as a simple measure of the 
complexity of the module. It can be seen that, on an average, as the size of the 
module increases, the number of decisions in it are likely to increase. This means 
that, on an average, as the size increases the cyc10matic complexity also increases. 
Though it is c1early possible that two programs of the same size have substantially 
different complexities, in general, size is quite strongly related to some of the 
complexity measures. 

Extension to Cyclomatic Complexity 

The cyc10matic complexity measure proposed by McCabe considers each decision 
in the program as a single unit (in the ftow graph, one node is created for each 
condition). With this, the cyc10matic complexity is the same as (under some condi
tions) the number of decisions plus one. Myers [Mye77] has extended the notion of 
cyc10matic complexity noting that decisions with multiple conditions (combined 
into a predicate by Boolean operators) are typically more complex than decisions 
with one condition. In this extension, complexity is measured as an interval rather 
than a single value. The lower bound of the interval is the number of decisions plus 
one or the cyc10matic complexity of the program. The upper bound of the interval 
is the number of individual conditions plus one. Specifying the complexity as an 
interval accounts for both the decisions and the conditions in a program. 

Halstead's Measure 

Halstead also proposed a number of other measures based on his software science 
[Hal77]. Some of these can be considered complexity measures. As given earlier, a 
number of variables are defined in software science. These are n I (number of unique 
operators), n2 (number of unique operands), NI (total frequency of operators), 
and N2 (total frequency of operands). As any program must have at least two 
operators--one for function call and one for end of statement-the ratio nl /2 can 
be considered the relative level of difficulty due to the larger number of operators in 
the program. The ratio N2/n2 represents the average number oftimes an operand is 
used. In a program in which variables are changed more frequently, this ratio will 
be larger. As such pro grams are harder to understand, ease oi reading or writing 
is defined as 

nl *N2 
D=--. 

2 *n2 

Halstead's complexity measure focused on the internal complexity of a module, as 
does McCabe's complexity measure. Thus the complexity ofthe module's connec
tion with its environment is not given much importance. In Halstead's measure, a 
module 's conpection with its environment is reftected in terms of operands and op-



www.manaraa.com

390 8. Coding 

erators. A call to another module is considered an operator, and all the parameters 
are considered operands of this operator. 

Live Variables 

In a computer program, a typical assignment statement uses and modifies only a few 
variables. However, in general the statements have a much larger context. That is, to 
construct or understand astatement, a programmer must keep track of a number of 
variables, other than those directly used in the statement. For a statement, such data 
items are called live variables. Intuitively, the more live variables for statements, 
the harder it will be to understand a program. Hence, the concept of live variables 
can be used as a metric for program complexity. 

First let us define live variables more precisely. A variable is considered live from 
its first to its last reference within a module, including all statements between 
the first and last statement where the variable is referenced. Using this definition, 
the set of live variables for each statement can be computed easily by analysis of 
the module's code. The procedure of determining the live variables can easily be 
automated. 

For astatement, the number of live variables represents the degree of difficulty of 
the statement. This notion can be extended to the entire module by defining the 
average number of live variables. The average number of live variables is the sum 
of the count of live variables (for all executable statements) divided by the number 
of executable statements. This is a complexity measure for the module. 

Live variables are defined from the point of view of data usage. The logic of a 
module is not explicitly included. The logic is used only to determine the first and 
last statement of reference for a variable. Hence, this concept of complexity is 
quite different from cyclomatic complexity, which is based entirely on the logic 
and considers data as secondary. 

Another data usage-oriented concept is span, the number of statements between 
two successive uses of a variable. If a variable is referenced at n different places 
in a module, then for that variable there are (n - 1) spans. The average span size 
is the average number of executable statements between two successive references 
of a variable. A large span implies that the reader of the program has to remember 
a definition of a variable for a larger period of time (or for more statements). In 
other words, span can be considered a complexity measure; the larger the span, the 
more complex the module. 

Knot Count 

A method for quantifying complexity based on the locations of the control trans
fers of the pro gram has been proposed in [WHH79]. It was designed largely for 
FORTRAN programs, where explicit transfer of control is shown by the use of 
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goto statements. A programmer, to understand a given program, typically draws 
arrows from the point of control transfer to its destination, helping to create a men
tal picture of the program and the control transfers in it. According to this metric, 
the more intertwined these arrows become, the more complex the program. This 
notion is captured in the concept of a "knot." 

A knot is essentially the intersection of two such control transfer arrows. If each 
statement in the program is written on aseparate line, this notion can be formalized 
as follows. Ajump from line a to line b is represented by the pair (a, b). Two jumps 
(a, b) and (p, q) give rise to a knot if either min (a, b) < min (p, q) < max (a, b) 
and max (p, q) > max (a, b); or min (a, b) < max (p, qa) < max (a, b) and min (p, 
q) < min (a, b). 

Problems can arise while determining the knot count of pro grams using struc
tured constructs. One method is to convert such a program into one that explicitly 
shows control transfers and then compute the knot count. The basic scheme can be 
generalized to flow graphs, though with flow graphs only bounds can be obtained. 

Topological Complexity 

A complexity measure that is sensitive to the nesting of structures has been proposed 
in [Che78]. Like cyclomatic complexity, it is based on the flow graph of a module or 
program. The complexity of a program is considered its maximal intersect number 
min. 

To compute the maximal intersect, a flow graph is converted into a strongly con
nected graph (by drawing an arrow from the terminal node to the initial node). A 
strongly connected graph divides the graph into a finite number of regions. The 
number of regions is (edges - nodes + 2). If we draw a line that enters each region 
exactly once, then the number of times this line intersects the arcs in the graph is 
the maximal intersect min, which is taken to be the complexity of the program. 

8.3.3 Style Metries 

Earlier in this chapter, we discussed many issues relating to programming style. 
The programming style affects the readability of a program. Hence, it will be very 
useful if we can quantify the programming style. In general, what is considered 
a "good" style will also depend on the local co ding conventions and the co ding 
standards of the organization. However, so me general guidelines for style can be 
formulated. Here we discuss an approach to quantify the programming style of a 
program [BM85]. In this approach, the following factors are considered to affect 
the programming style: 

1. MOdule,length: the average length of modules in the pro gram (measured in 
noncommented, nonblank lines). 
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2. Identifier length: the average length, in characters, of the user-defined iden-
tifiers. 

3. Comments: the percentage of totallines that are comment lines. 

4. Indentation: the ratio of initial spaces to total number of characters. 

5. Blank Iines: the percentage of lines that are blank. As blank lines are used 
by programmers to highlight the structure of the program, their usage affects 
readability. 

6. Line length: the average number of nonblank characters in a line. 

7. Embedded spaces: the average number of embedded spaces in a line. These 
are significant for the readability of arithmetic and logical expressions and 
declarations. 

8. Constants definitions: the percentage of an user identifiers that are defined 
as constants. 

9. Reserved words: the number of reserved words (and standard library func
tions) used. A high value shows a better use of facilities available to the 
programmer. 

10. Include files: the number of files included in a program. This represents how 
a program has been divided into files. 

11. Gotos: the number of occurrences of the goto statement. It is assumed that a 
figure of 0 is best. 

Each of these features is considered as affecting the readability or style of the 
pro gram. A very high or very low value is considered undesirable. For example, 
understandability increases as the number of comments increases. However, after a 
certain point, the understandability decreases, as excessive comments can obscure 
the semantics of the pro gram. The same is the situation with other factors. Hence, 
foreach factor, a low and ahigh value is attached. Ifthe value ofthe feature is less 
than low or higher than high its contribution to the style "score" of the program 
is considered O. Between low and high, two other threshold values are defined: 
lot and hit. Ifthe value of the feature is between these, the score contribution of 
this feature is the specified max value. If it is between low and lot or between hit 
and high, a proportional score between 0 and max is given. The general curve for 
the score contribution of a feature is shown in Figure 8.9. 

For each feature, the values for low, high, lot, hit, and max are specified. 
ForC programs, the specific values are shown in Table 8.1 [BM85]. The style score 
of the program is the sum of an the score contributions of an the features. A score 
higher than 60 is considered good, while a score less than 20 is considered poor. 
A program to evaluate the style score of C programs has been developed and used 
for the case study. It is available from the horne page of the book, as described in 
the preface. 
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low lot hit high 

Style Factor Value 

FIGURE 8.9. Programming style scoring 

max low lot hit high 

Module length 15 4 10 25 35 
Identifier length 14 4 5 10 14 
Comment lines (%) 12 8 15 25 35 
Indentation (%) 12 8 24 48 60 
Blank lines (%) 11 8 15 30 35 
Characters per line 9 8 12 25 30 
Spaces per line 8 1 4 10 12 
Defines (%) 8 10 15 25 30 
Reserved words 6 4 16 30 36 
Indude files 5 0 3 3 4 
Gotos -20 1 3 99 99 

TABLE 8.1. Style metric values. 

In the coding phase, the design of a system is translated into code that can be 
compiled and executed. Although the coding phase does not affect the structure of 
the system, it has great impact on the internal structure of modules, which affects 
the testability and understandability of the system. 

The goal of the coding phase is to produce dear and simple programs. The aim 
is not to reduce the co ding effort, but to program in a manner so that testing and 
maintenance costs are reduced. Programs should not be constructed so that they 
are easy to write; they should be easy to read and understand. Reading programs 
(mostly by people other than the programmer) is a much more common activity 
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than writing pro grams. Hence, the goal of the coding phase is to produce simple 
programs that are clear to understand and modify. 

To enhance the readability of programs, structured programming should be used. 
In structured programs, the program is a sequence of single-entry, single-exit state
ments, and the control flow during execution is linearized. This makes the dynamic 
structure of a program similar to the static structure. Such programs are easy to 
understand and verify. 

Information hiding is another principle that can be used to enhance program clarity. 
In information hiding, the data structures are hidden behind access functions. Dif
ferent modules are given access to data on a "need to know" basis. When supported 
by language mechanisms, information hiding is a very useful construct that limits 
coupling between modules by ensuring that the data encapsulated in a module is 
accessible only to operations defined on that module. From the outside, the data 
cannot be directly accessed, and only operations on the data can be performed. 

Internal documentation is also essential for readable programs. Comments in pro
grams should be written to aid understanding and should provide supplementary 
information. Usually, comments should be written for blocks of code such as pro
cedures and functions. A prologue for a module should define what the module is 
doing and the logic of the module. It should also describe the side effects and other 
information about the module. 

Verification of code can be done in a number of ways, including code reading or 
desk reviews, data flow analysis, symbolic execution, proving cOITectness, code 
reviews and walkthroughs, and unit testing. Of all these, code reviews and unit 
testing are the most common. In code reviews, a team of persons reviews the code 
as in a requirement or design review. During testing the program is executed with 
test cases to determine the presence of eITors. Except for testing, all other methods 
discussed in the chapter are static methods where the program is not executed. 
Static methods often directly find the eITor in the program, while testing detects 
only the presence of eITors. 

A number of metrics exist for quantifying different qualities of the code. The most 
commonly used are size metrics, because they are used to assess the productivity 
of people and are often used in cost estimation. The most common size measure is 
lines of code (LOC), wh ich is also used in most cost models. There are also other 
measures for size. 

The goal of complexity metrics is to quantify the complexity of software. Com
plexity is an important factor affecting the productivity of projects and is a factor 
in cost estimation. A number of different metrics exist. Perhaps the most common 
is the cyclomatic complexity, which is based on the internal logic of the program 
and defines complexity as the number of independent cycles in the flow graph of 
the pro gram. 
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1. What is structured programming and why is it important? 

2. What are the major concepts that help malm a program more readable? 

3. Consider the following program, which takes in the values A, B, and C in 
sorted order and determines the type of triangle represented by A, B, and 
C: 

read(a, b, c); 
if(a< b) or (b < c) then 

print("Illegal inputs"); 
return; 

if(a=b) or (b=c) then 
if(a=b) and (b=c) then print("equilateral triangle") 
else print("isosc1es triangle") 

else begin 
a := a*a; b := b*b; c := c*c; 
d :=b+c; 
if (a = d) then print("right triangle") 
else if (a<d) then print("acute triangle") 
else print("obtuse triangle"); 

end; 

Symbolically execute this program and show that it is correct (or incorrect). 
Draw the execution tree. 

4. Consider the following pro gram to determine the product of two integers 
x and y: 

if(x = 0) or (y = 0) then 
p :=0 

else begin 
p :=x; 
i:= 1; 
while (i != y) do begin 

p:= p * x; 
i:= i + 1; 

end; 
end; 

Write formal specifications for a program to compute the product of two 
numbers. Then, using the axiomatic method, prove that this pro gram is correct. 

5. Consider the following two algorithms for searching an element Ein a sorted 
array A, which contains n integers. The first procedure implements a simple 
linear search algorithm. The second performs a binary search. Binary search 
is generl,llly much more efficient in terms of execution time compared to the 
linear search. 
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function lin_search (A, E): boolean 
var 

i: integer; 
found: boolean; 

begin 
found := false; 
i:= 1; 
while (not found) and Ci :s n) do begin 
if (A[i] = E) then found := true; 
i:= i + 1; 
end; 
lin_search := found; 

end; 
function bin_search (A, E): boolean 
var 

low, high, mid, i, j : integer; 
found : boolean; 

begin 
low:= 1; 
high:= n; 
found := false; 
while (low :s high) and (not found) do begin 

mid := (low + high)/2; 
ifE< A[mid] tben high := mid - 1 

else ifE > A[mid] tben low := mid + 1 
else found := true; 

end; 
bin_search := found; 

end; 
Determine the cyclomatic complexity and live variable complexity for these 
two functions. Is the ratio of the two complexity measures similar for the two 
functions? 

6. What is Halstead's size measure for these two modules? Compare this size 
with the size measured in LOC. 

7. Consider the size measure as the number of bytes needed to store the object 
code of a prograrn. How useful is this size measure? Is it closer to LOC or 
Halstead's metric? Explain. 

8. Not all control statements are equally complex. Assign complexity weights 
(0-10) to different control statements in Pascal, and then determine a formula 
to calculate the complexity of a program. How will you determine if this 
measure is better or worse than other complexity measures? 

9. A combination of conditions in adecision makes adecision more complex. 
Such decisions should be treated as a combination of different decisions. 
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Compared to the simple measure where each decision is treated as one, how 
much will the difference in the cyclomatic complexity of a program with 
20% of its conditional statements having two conditions and 20% having 
three conditions be, when evaluated by this new approach? 

10. Suppose multiple methods must be used for verification, as is usually done. 
Select at least three methods you want to apply. In what order will you apply 
these? 

11. Design an experiment to study the correlation between some of the complexity 
measures and between some of the size measures. 

12. Design an experiment to study ifthe "error-proneness" of a module is related 
to a complexity measure for the module. 
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CASE STUDY 

Implementation of Structured Design 

The programs were written in C on a Sun workstation, as required. The first version 
almost directly implemented the modules specified in the function-oriented design 
(given earlier and available from the horne page). The first thing that came up 
during coding was that our view of the data expanded. To write the code of the 
modules, data like total number of courses, starting index for the different type of 
courses, etc. were needed. 

The total size of the pro gram was about 1320 lines. We determined various code 
based complexity and size metrics for this code using the tool complexi ty that we 
developed (and which is available from the horne page, as described in the preface). 
The metrics that were collected were cyclomatic complexity, Halstead metrics, and 
live variables and span of variables. The tools output these in descending order. 
Part of the output from these tools is given here: 

MODULE SIZE CYCLOMATIC COMPLEXITY 

validate_file2 111 18 
validate_dept_courses 88 17 
sched_ug_pref 
validate_class_rooms 
validate_lec_times 
print_conflicts 
print_TimeTable 
chk_fmt_time_slot 
sched_pg_pref 
separate_courses 

Total Size: 1322 
Avg. size: 33 

Module 

sched_ug_pref 
validate_file2 
sched_pg_pref 
validate_class_rooms 
validate~dept_courses 

104 16 
92 15 
84 15 
50 11 
42 10 
36 10 
82 9 
46 9 

Total Cyclomatic Complexity: 243 
Avg. Cyclomatic Complexity: 6 

size 

104 
111 

82 
92 
88 

Volume Ease of 
reading 

1764 76 
1725 131 
1352 55 
1329 111 
1271 103 

Prog. 
effort 

134 
225 
74 
147 
130 
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main 
validate_lec_times 
separate_courses 
print_TimeTable 
print_explanation 

Total Size: 1322 
Avg. size: 33 

30 1180 
84 1147 
46 923 
42 891 
49 864 

Total Volume: 21115 
Avg. Volume: 527 
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36 42 
95 108 
36 33 
38 33 
30 25 

From these metrics, it was clear that some of the modules were too large and 
had a high complexity value. Based on this information, we carefully reviewed 
some of these modules to see if their size or complexity could be reduced. During 
the reviews we found that in these modules some parts of the code were actually 
implementing some support functions that can be separated by forming clean, 
functionally cohesive modules. The basic guiding rule while trying to "break" the 
modules was to partition a module only if the new modules were all functionally 
cohesive modules. That is, parts of the code were taken to form new modules if 
the new modules were functionally cohesive and if the complexity of the parent 
module was reduced. 

As a resuIt of this, a few new modules were formed. The complexity of many of the 
modules was reduced, and there was a general decline in the average complexity. 
Parts of the cyclomatic complexity analysis of the modules in the new code is 
given soon. After reviewing the code again, we feIt that further reducing the size 
and complexity of modules would resuIt in a structure that is not modular. Note 
that the total size and complexity reduced by this exercise, besides the reduction in 
the complexity and size of the individual modules. That is, by this exercise we did 
not just redistribute the complexity, we actually reduced the overall complexity. 

MODULE SIZE CYCLOMATIC COMPLEXITY 

sched_ug_pref 85 14 
validate_class_rooms 89 14 
validate_dept_courses 80 13 
validate_lec_times 83 13 
print_conflicts 50 11 
print_TimeTable 42 10 
chk_fmt_time_slot 33 10 
print_explanation 49 9 
separate_courses 47 9 
sChed_pg_no_pref 53 9 
sched_ug_no_pref 46 8 
sched_pg_pref 67 8 
chk_file2_header 27 8 
chk_f~t_course_no 17 7 
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form_pref_list 
validate_file2 

46 
44 

7 
7 

Total Size: 1264 
Avg. Size: 30 

Total Cyclomatic Complexity: 235 
Avg. Cyclomatic Complexity: 5 

The style of the final program was also analyzed by the style tool (which is 
also available from the horne page). The tool gives the style metrics for the whole 
program, and for each module. The metrics for the entire program are shown soon. 
As we can see, the overall score is quite good. However, it does say that the amount 
of blank: liDes and spaces per line are fewer. As there are not tao many arithmetic 
expressions, we do not consider lack of blank spaces important. SimiIarly, for 
structuring and organization, we have used so me non-blank pattern lines. Hence 
we do not consider highlighting of lack of blank lines important. 

SCORE FOR THE PROGRAMMING STYLE : 70/100 **** GOOD 

STYLE METRICS FOR THE WHOLE PRO GRAM 

Average size of the module 30 ACCEPTABLE 
Average identifier length 8 ACCEPTABLE 
Percentage of comment lines 20 ACCEPTABLE 
Percentage of blank lines 14 LESS 
Average number of chars per line 12 ACCEPTABLE 
Average number of embedded 
spaces per line 0 VERY LESS 
Total no. of reserved words used 29 ACCEPTABLE 
Number of files included 4 ACCEPTABLE 
Number of goto's used 0 

Both vers ions of the code for the case study (i.e., the initial implementation and 
the implementation after complexity reduction) are available from the horne page, 
whose address is given in the preface. 

Implementation of the 00 Design 

The object-oriented design of the case study, given earlier in Chapter 6, was im
plemented in C++. The implementation did extend the design a litde, as is to be 
expected, but the extension was mostly in addition of data members and same 
methods. No major design changes were required due to implementation issues. 
The code could have been analyzed by using some of the metrics and then modified, 
as was done in the code implementing the structured design. However, this was 
not done for this implementation for three reasons. First, we did not have tools to 
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analyze the C++ programs. Secondly, some of the tools that were available for use 
through other sources worked on a different version of C++ (our implementation 
is in GNU C++). And finally, the 00 metrics are still relatively new, and not much 
data about their use is available. 

The C++ code for the case study is also available from the horne page of the book. 
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Testing 

In a software development project, errors can be injected at any stage during devel
opment. For each phase, we have discussed different techniques for detecting and 
eliminating errors that originate in that phase. However, no technique is perfect, 
and it is expected that some of the errors of the earlier phases will finally mani
fest themselves in the code. This is particularly true because in the earlier phases 
most of the verification techniques are manual because no executable code exists. 
Ultimately, these remaining errors will be reflected in the code. Hence, the code 
developed during the coding activity is likely to have some requirements errors 
and design errors, in addition to errors introduced during the coding activity. Be
cause code is frequently the only product that can be executed and whose actual 
behavior can be observed, testing is the phase where the errors remaining from all 
the previous phases must be detected. Hence, testing performs a very critical role 
for quality assurance and for ensuring the reliability of software. 

During testing, the program to be tested is executed with a set of test cases, and 
the output of the program for the test cases is evaluated to determine if the pro
gram is performing as expected. Due to its approach, dynamic testing can only 
ascertain the presence of errors in the pro gram; the exact nature of the errors is not 
usually decided by testing. Testing forms the first step in determining the errors in 
a program. Clearly, the success of testing in revealing errors in programs depends 
critically on the test cases. Much of this chapter is devoted to test case selection, 
criteria for selecting test cases, and their effect on testing. 

Testing a large system is a complex activity, and like any complex activity it has to 
be broken into smaller activities. Due to this, for a project, incremental testing is 
generally perfprmed, in which components and subsystems of the system are tested 
separately before integrating them to form the system for system testing. This form 
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of testing, though necessary to ensure quality for a large system, introduces new 
issues of how to select components for testing and how to combine them to form 
subsystems and systems. In other words, integration of the various components of 
the system is an important issue that the testing phase has to deal with. For this 
reason, this phase is sometimes called "integration and testing." 

We begin this chapter by discussing some definitions and concepts pertinent to 
testing. Then we discuss the two basic approaches to testing-black box or func
tional testing and white box or structural testing. Following this we discuss some of 
the special issues involved in testing object-oriented programs. The overall testing 
process is discussed next, followed by reliability estimation, as reliability estima
tion is the main metric of interest during testing. This chapter ends with the test 
plan and test case specification for the case study. 

9.1 Testing Fundamentals 

In this section we will first define some of the terms that are commonly used when 
discussing testing. Then we will discuss some basic issues relating to how testing 
can proceed, the need for oracles for testing, the importance of psychology of the 
tester, and some desirable properties for the criteria used for testing. Once these 
are discussed, we will proceed with the issue of selection of test cases. 

9.1.1 Error, Fault, and Failure 

So far, we have used the intuitive meaning of the term error to refer to problems in 
requirements, design, or code. Sometimes error, fault, and failure are used inter
changeably, and sometimes they refer to different concepts. Let us start by defining 
these concepts clearly. We follow the IEEE definitions [IEE8?] for these terms. 

The term error is used in two different ways. It refers to the discrepancy between 
a computed, observed, or measured value and the true, specified, or theoretically 
correct value. That is, error refers to the difference between the actual output of a 
software and the correct output. In this interpretation, error is essentially a measure 
of the difference between the actual and the ideal. Error is also used to refer to 
human action that results in software containing a defect or fault. This definition 
is quite general and encompasses all the phases. 

Fault is a condition that causes a system to fail in performing its required function. 
A fault is the basic reason for software malfunction and is synonymous with the 
commonly used term bug. The term error is also often used to refer to defects 
(taking a variation of the second definition of error). In this book we wiII continue 
to use the terms in the manner commonly used, and no explicit distinction will be 
made between errors and faults, unless necessary. It should be noted that the only 
faults that a soft)Vare has are "design faults"; there is no wear and tear in software. 
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Failure is the inability of a system or component to perform a required function 
according to its specifications. A software failure occurs if the behavior of the 
software is different from the specified behavior. Failures may be caused due to 
functionaI or performance reasons. A failure is produced only when there is a fault 
in the system. However, presence of a fault does not guarantee a failure. In other 
words, faults have the potential to cause failures and their presence is a necessary 
but not a sufficient condition for failure to occur. Note that the definition does not 
imply that a failure must be observed. It is possible that a failure may occur but 
not be detected. 

There are some implications ofthese definitions. Presence of an error (in the state) 
implies that a failure must have occurred, and the observance of a faiIure implies 
that a fault must be present in the system. However, the presence of a fault does not 
imply that a faiIure must occur. The presence of a fault in a system only implies 
that the fault has a potential to cause a failure to occur. Whether a fault actually 
manifests itself in a certain time duration depends on many factors. This means 
that if we observe the behavior of a system for some time duration and we do not 
observe any errors, we cannot say anything about the presence or absence of faults 
in the system. If, on the other hand, we observe some faiIure in this duration, we 
can say that there are some faults in the system. 

There are direct consequences of this on testing. In testing, system behavior is 
observed, and by observing the behavior of a system or a component during testing, 
we determine whether or not there is a failure. Because of this fundamental reliance 
on external behavior observation, testing can only reveal the presence of faults, not 
their absence. By observing faiIures of the system we can deduce the presence of 
faults; but by not observing a failure during our observation (or testing) interval we 
cannot claim that there are no faults in the system. An immediate consequence of 
this is that it becomes hard to decide for how long we should test a system without 
observing any faiIures before deciding to stop testing. This makes "when to stop 
testing" one of the hard issues in testing. 

During the testing process, only failures are observed, by which the presence of 
faults is deduced. The actual faults are identified by separate activities, commonly 
referred to as "debugging." In other words, for identifying faults, after testing has 
revealed the presence of faults, the expensive task of debugging has to be performed. 
This is one of the reasons why testing is an expensive method for identification of 
faults, compared to methods that direct1y observe faults. 

9.1.2 Test Oracles 

To test any program, we need to have adescription of its expected behavior and a 
method of de\ermining whether the observed behavior conforms to the expected 
behavior. For this we need a test oracle. 
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A test oracle is a mechanism, different from the program itself, that can be used to 
check the correctness of the output of the pro gram for the test cases. Conceptually, 
we can consider testing a process in which the test cases are given to the test oracle 
and the program under testing. The output of the two is then compared to determine 
if the program behaved correctly for the test cases. This is shown in Figure 9.1. 

Test oracles are necessary for testing. Ideally, we would like an automated oracle, 
which always gives a correct answer. However, often the oracles are human beings, 
who mostly compute by hand what the output of the program should be. As it 
is often extremely difficult to determine whether the behavior conforms to the 
expected behavior, our "human oracle" may make mistakes. As a result, when 
there is a discrepancy between the results of the pro gram and the oracle, we have 
to verify the result produced by the oracle, before declaring that there is a fault in 
the program. This is one of the reasons testing is so cumbersome and expensive. 

The human oracles generally use the specifications of the program to decide what 
the "correct" behavior of the pro gram should be. To help the oracle determine 
the correct behavior, it is important that the behavior of the system or component 
be unambiguously specified and that the specification itself is error-free. In other 
words, the specifications should actually specify the true and correct system be
havior. These conditions are hard to satisfy. After all, it is the activity of so me 
earlier phase that determines these specifications, and these activities might be 
error-prone. Hence, the specifications themselves may contain errors, be impre
eise, or contain ambiguities. Such shortcomings in the specifications are the major 
cause of situations where one party claims that a particular condition is not a fail
ure while the other claims it iso However, there is no easy solution to this problem. 
Testing does require some specifications against which the given system is tested. 

There are some systems where oracles are automatically generated from specifi
cations of programs or modules [laI87]. With such oracles, we are assured that 
the output of the oracle is consistent with the specifications. However, even this 
approach does not solve all our problems, because of the possibility of errors in the 
specifications. Consequently, an oracle generated from the specifications will only 
produce correctresults if the specifications are correct, and it will not be depend-
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able in the case of specification eITors. Furthermore, such systems that generate 
oracles from specifications are likely to require formal specifications, which are 
frequently not generated during design. 

9.1.3 Top-Down and Bottom-Up Approaches 

Generally, parts of the program are tested before testing the entire program. Besides 
partitioning the problem of testing, another reason for testing parts separately is 
that if a test case detects an eITor in a large program, it will be extremely difficult 
to pinpoint the source of the eITor. That is, if a huge program does not work, 
determining which module has eITors can be a formidable task. Furthermore, it 
will be extremely difficult to construct test cases so that different modules are 
executed in a sufficient number of different conditions so that we can feel fairly 
confident about them. In many cases, it is even difficult to construct test cases so 
that all the modules will be executed. This increases the chances of a module's 
eITors going undetected. Hence it is clear that for a large system, we should first 
test different parts of the system independently, before testing the entire system. 

In incremental testing, some parts ofthe system are first tested independently. Then 
these parts are combined to form a (sub) system, which is then tested independently. 
This combination can be done in two ways: either only the modules that have been 
tested independently are combined or some new untested modules are combined 
with tested modules. Both of these approaches require that the order in which 
modules are to be tested and integrated be planned before commencing testing. 

We assurne that a system is a hierarchy of modules. For such systems, there are 
two common ways modules can be combined, as they are tested, to form a working 
program: top-down and bottom-up. In top-down strategy, we start by testing the 
top of the hierarchy, and we incrementally add modules that it calls and then test 
the new combined system. This approach of testing requires stubs to be written. 
A stub is a dummy routine that simulates a module. In the top-down approach, a 
module (or a collection) cannot be tested in isolation because they invoke so me 
other modules. To al10w the modules to be tested before their subordinates have 
been coded, stubs simulate the behavior of the subordinates. 

The bottom-up approach starts from the bottom of the hierarchy. First the modules 
at the very bottom, which have no subordinates, are tested. Then these modules 
are combined with higher-level modules for testing. At any stage of testing all 
the subordinate modules exist and have been tested earlier. To perform bottom-up 
testing, drivers are needed to set up the appropriate environment and invoke the 
module. It is the job of the driver to invoke the module under testing with the 
different set of test cases. 

Notice that bath top-down and bottom-up approaches are incremental, starting with 
testing single modules and then adding untested modules to those that have been 
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tested, until the entire system is tested. In the first case, stubs must be written to 
perform testing, and in the other, drivers need to be written. Top-down testing is 
advantageous if major flaws occur toward the top of the hierarchy, while bottom-up 
is advantageous if the major flaws occur toward the bottom. Often, writing stubs can 
be more difficult than writing drivers, because one may need to know beforehand 
the set of inputs for the module being simulated by the stub and to determine proper 
responses for these inputs. In addition, as the stubs often simulate the behavior of 
a module over a Iimited domain, the choice of test cases for the superiordinate 
module is limited, and deciding test cases is often very difficult. 

It is often best to select the testing method to conform with the development method. 
Thus, if the system is developed in a top-down manner, top-down testing should 
be used, and if the system is developed in a bottom-up manner, a bottom-up testing 
strategy should be used. By doing this, as parts of the system are developed, they 
are tested, and errors are detected as development proceeds. It should be pointed 
out that we are concemed with actual program development here, not the design 
method. The development can be bottom-up even if the design was done in a 
top-down manner. 

9.1.4 Test Cases and Test Criteria 

Having test cases that are good at reveaIing the presence of faults is central to 
successful testing. The reason for this is that if there is a fault in a program, the 
program can still provide the expected behavior for many inputs. Only for the set of 
inputs that exercise the fault in the program will the output of the pro gram deviate 
from the expected behavior. Hence, it is fair to say that testing is as good as its test 
cases. 

Ideally, we would Iike to determine a set of test cases such that successful execution 
of all of them implies that there are no errors in the program. This ideal goal cannot 
usually be achieved due to practical and theoretical constraints. Each test case 
costs money, as effort is needed to generate the test case, machine time is needed 
to execute the program for that test case, and more effort is needed to evaluate 
the results. Therefore, we would also like to minimize the number of test cases 
needed to detect errors. These are the two fundamental goals of a practical testing 
activity-maximize the number of errors detected and minimize the number of 
test cases (i.e., minimize the cost). As these two are frequently contradictory, the 
problem of selecting the set of test cases with which a program should be tested 
becomes more complex. 

While selecting test cases the primary objective is to ensure that if there is an 
error or fault in the program, it is exercised by one of the test cases. An ideal test 
case set is one that succeeds (meaning that its execution reveals no errors) only 
if there are no errors in the program. One possible ideal set of test cases is one 
that includes all the possible inputs to the program. This is often called exhaustive 
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testing. However, exhaustive testing is impractical and infeasible, as even for small 
programs the number of elements in the input domain can be extremely large (i.e., 
it is not practical due to cost constraints). 

Hence, a realistic goal for testing is to select a set of test cases that is elose to 
ideal. How should we select our test cases? On what basis should we inelude some 
element of the program domain in the set of test cases and not inelude others? 
For this test selection criterion (or simply test criterion) can be used. For a given 
program P and its specifications S, a test selection criterion specifies the conditions 
that must be satisfied by a set of test cases T. The criterion becomes a basis for test 
case selection. For example, if the criterion is that all statements in the program be 
executed at least once during testing, then a set of test cases T satisfies this criterion 
for a program P if the execution of P with T ensures that each statement in P is 
executed at least once. 

There are two aspects of test case selection-specifying a criterion for evaluating 
a set of test cases, and generating a set of test cases that satisfy a given criterion. 
As we will see, many test case criteria have been proposed. However, generating 
test cases for most of these is not easy and cannot, in general, be automated fully. 
Often, a criterion is specified and the tester has to generate test cases that satisfy the 
criterion. In some cases, guidelines are available for deciding test cases. Overall, 
the problem of test case selection is very challenging, and current solutions are 
limited in scope. 

There are two fundamental properties for a testing criterion: reliability and validity 
[GG75]. A criterion is reliable if all the sets (of test cases) that satisfy the criterion 
detect the same errors. That is, it is insignificant which of the sets satisfying the 
criterion is chosen; every set will detect exactly the same errors. A criterion is valid 
if for any error in the program there is some set satisfying the criterion that will 
reveal the error. A fundamental theorem of testing is that if a testing criterion is 
valid and reliable, if a set satisfying the criterion succeeds (revealing no faults) 
then the program contains no errors [GG75]. However, it has been shown that no 
algorithm exists that will determine a valid criterion for an arbitrary program. 

As getting an ideal test criterion (that is both valid and reliable) is not gener
ally possible, other more practical properties of test criteria have been proposed. 
Some axioms capturing some of the desirable properties of test criteria have been 
proposed in [Wey86]. We discuss some of the axioms proposed in [Wey86] here. 

The first axiom is the applicability axiom, which states that for every program 
(and its specification) there exists a test set T that satisfies the criterion. This is 
clearly desirable for a general-purpose criterion; a criterion that can be satisfied 
only for some types of programs is of limited use in testing. The axiom is not 
saying anything about whether it is feasible to actually generate the test cases to 
satisfy the criterion. All it is saying is that it should be possible for all programs to 
have a ~et of test cases that will satisfy the criterion. 
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Tbe antiextensionality axiom states that there are programs P and Q, both of which 
implement the same specifications, such that a test set T satisfies the criterion 
for P but does not satisfy the criterion for Q. This axiom ensures that the program 
structure has an important role to play in deciding the test cases. Tbis axiom should 
hold for those critena based on the program structure but not necessarily for those 
criteria based on specifications only. For program structure-based criteria, this 
axiom says that if there are multiple ways to implement a specification, the same set 
of test cases should not necessarily satisfy the criterion for both implementations. 

Tbe antidecomposition axiom states that there exists a program P and its component 
Q such that a test case set T satisfies the criterion for P and T' is the set of values 
that variables can ass urne on entering Q for some test case in T and T' does 
not satisfy the criterion for Q. Essentially, the axiom says that just because the 
criterion is satisfied for the entire program, it does not mean that the criterion has 
been satisfied for its components. For example, T might be such that the variables 
assurne only a very limited set of values when entering Q. In this case, the criterion 
may not be satisfied for Q even when T satisfies the criterion for P. 

The anticomposition axiom states that there exist programs P and Q such that T 
satisfies the criterion for P and the outputs of P for T (represented by P(T)) satisfy 
the criterion for Q, but T does not satisfy the criterion for P;Q. In other words, 
separately satisfying the criterion for the parts P and Q does not imply that the 
criterion has been satisfied by the program comprising P;Q. This is the dual of the 
antidecomposition axiom and should hold as the complexity of P;Q is more than 
the sum of complexities P and Q due to the interactions between P and Q. For 
example, the number of paths in a program comprising of P and Q is frequently 
far more than the sum of the number of paths in the two pro grams. 

A total of eight axioms were proposed in [Wey86] (more were added in [Wey88]). 
We have discussed only a few key ones here. These axioms, which are for criteria 
based on the structure of the program, only provide some desirable properties that 
the test criteria should have. If all the axioms are satisfied by a test criterion, it does 
not imply that a set of test cases that satisfies the criterion will guarantee correctness. 
These are only some theoretically desired properties that a test criterion should 
have. If a test criterion does not even satisfy these axioms, then its applicability is 
even more limited, and the confidence one can have in testing based on that test 
criterion is presumably lower. 

As it turns out, it is very difficult to get a criterion that satisfies even these axioms. 
Tbis is largely due to the fact that a program may have paths that are infeasible, 
and one cannot determine these infeasible paths algorithmically as the problem 
is undecidable. Hence, one cannot have any criterion that tries to ensure some 
"coverage" of program structures, which will satisfy even the most fundamental 
applicability axiom. For example, the criterion of executing all statements does not 
satisfy the applicability axiom for this reason. 
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Hence, geuing a criterion that is reliable and valid and that can be satisfied by 
a manageable number of test cases is usually not possible, and it is not easy to 
have a criterion that will satisfy the axioms in [Wey86]. Even devising a pre
eise criterion is a very difficult task. So, often criteria are chosen that are not 
valid or reliable and that do not satisfy the axioms, like "90% of the statements 
should be executed at least once." Often a criterion is not even clearly speci
fied, as in "all special values in the domain must be included" (what is a "special 
value"?). 

Even when the criterion is specified, generating test cases to satisfy a criterion 
is not simple. In general, generating test cases for most of the criteria cannot 
be automated. For example, even for a simple criterion like "each statement 
of the program should be executed," it is extremely hard to construct a set of 
test cases that will satisfy this criterion for a large program, even if we as
sume that all the statements can be executed (i.e., there is no part that is not 
reachable ). 

Let us now consider the issue of comparison of criteria, that is, is a criterion 
"better" or "more powerful" than another. One relationship between criteria is that 
of inclusion (or subsumption). A criterion Cl includes (or subsumes) the criterion 
C2 if for every program P and its speeification S, any set of test cases that satisfy 
Cl also satisfy C2 [FW93b]. This relation is represented as Cl => C2 , and is a 
transitive relation. One may think that if Cl=> C2 , testing based on Cl will always 
be better than testing based on C2. Unfortunately, this is not the case. The reason 
is that the fault-detection capability of a set of test cases T that satisfy a criterion C 
depends on the actual test cases in T and not just C (i.e., the criterion is not valid). 
In other words, if Tl and T2 both satisfy C for a pro gram P, it does not mean that Tl 
and T2 will execute the same paths of P and detect the same faults in P. Because the 
actual test cases also playa role in whether or not an error in a program is detected, 
in general, it is possible to have a situation where Cl => C2 , Tl satisfies Cl, T2 

satisfies C2 , but T2 detects an error that Tl does not. However, if similar methods 
are used for test case generation then, generally speaking, Cl will be better for 
testing than C2 if Cl => C2 . 

The intent of the preceding discussion is to illustrate that no single criterion will 
serve the purpose of detecting a reasonable number of errors in a pro gram. And 
though frequently the focus is on the criterion, to use a criterion for testing, the 
strategy for generating test cases to satisfy a criterion is also important. As it is 
generally known that all the faults in a program cannot be practically revealed by 
testing, and due to the limitations of the test criterion, it is best that during testing 
more than one criterion be used. One can also say that precise criterion-based 
testing that will provide a determinable level of confidence in testing is generally 
not possible. , 
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9.1.5 Psychology of Testing 

As we have seen, devising a set of test cases that will guarantee that all errors 
will be detected is not feasible. Möreover, there are no formal or precise methods 
for selecting test cases. Even though there are a number of heuristics and rules of 
thumb for deciding the test cases, selecting test cases is still a creative activity, 
that relies on the ingenuity of the tester. Due to this reason, the psychology of the 
person perforrning the testing becomes important. 

The aim of testing is often to demonstrate that a program works by showing that 
it has no errors. This is the opposite of what testing should be viewed aso The 
basic purpose of the testing phase is to detect the errors that may be present in 
the program. Hence, one should not start testing with the intent of showing that a 
program works; but the intent should be to show that a program does not work. 
With this in mind we define testing as folIows: testing is the process 01 executing 
a program with the intent 01 finding errors [Mye79]. 

This emphasis on proper intent of testing is not a trivial matter because test cases 
are designed by human beings, and human beings have a tendency to perform 
actions to achieve the goal they have in mind. So, if the goal is to demonstrate 
that a program works, we may consciously or subconsciously seIect test cases that 
wiIl try to demonstrate that goal and that will beat the basic purpose of testing. On 
the other hand, if the intent is to show that the program does not work, we wiIl 
challenge our intellect to find test cases toward that end, and we are likely to detect 
more errors. Testing is essentially a destructive process, where the tester has to 
treat the program as an adversary that must be beaten by the tester by showing the 
presence of errors. With this in mind, a test case is "good" if it detects an as-yet
undetected error in the program, and our goal during designing test cases should 
be to design such "good" test cases. 

One of the reasons many organizations require a product to be tested by people not 
involved with developing the program before finally delivering it to the customer is 
this psychological factor. It is hard to be destructive to something we have created 
ourselves, and we alllike to believe that the program we have written "works." So, 
it is not easy for someone to test his own program with the proper frame of mind 
for testing. Another reason for independent testing is that sometimes errors occur 
because the programmer did not understand the specifications clearly. Testing of 
a program by its programmer will not detect such errors, whereas independent 
testing may succeed in finding them. 

9.2 Functional Testing 

There are two basic approaches to testing: functional and structural. In functional 
testing the structure of the program is not considered. Test cases are decided solely 
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on the basis of the requirements or specifications of the program or module, and 
the internals of the module or the program are not considered for selection of test 
cases. Due to its nature, functional testing is often called "black box testing." In 
the structural approach, test cases are generated based on the actual code of the 
program or module to be tested. This structural approach is sometimes called "glass 
box testing." In this section, we will present some techniques for generating test 
cases for functional testing. Structural testing is discussed in the next section. 

The basis for deciding test cases in functional testing is the requirements or speci
fications of the system or module. For the entire system, the test cases are designed 
from the requirements specification document for the system. For modules cre
ated during design, test cases for functional testing are decided from the module 
specifications produced during the design. 

The most obvious functional testing procedure is exhaustive testing, which as we 
have stated, is impractical. One criterion for generating test cases is to generate 
them randomly. This strategy has little chance of resulting in a set of test cases that 
is elose to optimal (i.e., that detects the maximum eITors with minimum test cases). 
Hence, we need some other criterion or rule for selecting test cases. There are no 
formal rules for designing test cases for functional testing. In fact, there are no 
precise criteria for selecting test cases. However, there are a number of techniques 
or heuristics that can be used to select test cases that have been found to be very 
successful in detecting eITors. Here we mention some of these techniques. 

9.2.1 Equivalence Class Partitioning 

Because we cannot do exhaustive testing, the next natural approach is to divide the 
domain of all the inputs into a set of equivalence elasses, so that if any test in an 
equivalence elass succeeds, then every test in that elass will succeed. That is, we 
want to identify elasses of test cases such that the success of one test case in a elass 
implies the success of others. If we can indeed identify such elasses and guarantee 
that each elass forms such an equivalence elass, the success of one test case from 
each equivalence elass is equivalent to successfully completing an exhaustive test 
of the program. 

However, without looking at the internal structure of the program, it is impossible 
to determine such ideal equivalence classes (even with the internal structure, it 
usually cannot be done). The equivalence elass partitioning method [Mye79] tries 
to approximate this ideal. Different equivalence elasses are formed by putting 
inputs for which the behavior pattern of the module is specified to be different 
into similar groups and then regarding these new elasses as forming equivalence 
elasses. TbC rationale of forming equivalence elasses like this is the assumption that 
if the specifications require exactly the same behavior for each element in a elass 
of values, then the program is likely to be constructed so that it either succeeds 
or fails for each of the values in that elass. For example, the specifications of a 
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module that determines the absolute value for integers specify one behavior for 
positive integers and another for negative integers. In this case, we will form two 
equivalence classes-one consisting of positive integers and the other consisting 
of negative integers. 

For robust software, we must also test for incorrect inputs by generating test cases 
for inputs that do not satisfy the input conditions. With this in mind, for each 
equivalence class of valid inputs we define equivalence classes for invalid inputs. 

Equivalence classes are usually formed by considering each condition specified on 
an input as specifying a valid equivalence class and one or more invalid equivalence 
classes. For example, if an input condition specifies a range of values (say, 0 < 
count< Max), then form a valid equivalence class with that range and two invalid 
equivalence classes, one with values less than the lower bound of the range (i.e., 
count< 0) and the other with values higher than the higher bound (count> Max). 
If the input specifies a set of values and the requirements specify different behavior 
for different elements in the set, then a valid equivalence class is formed for each 
of the elements in the set and an invalid class for an entity not belonging to the set. 

Essentially, if there is reason to believe that the entire range of an input will not 
be treated in the same manner, then the range should be split into two or more 
equivalence classes. Also, for each valid equivalence class, one or more invalid 
equivalence classes should be identified. For example, an input may be specified as 
a character. However, we may have reason to believe that the program will perform 
different actions if a character is an alphabet, a number, or a special character. In 
that case, we will split the input into three valid equivalence classes. 

It is often useful to consider equivalence classes in the output. For an output equiv
alence class, the goal is to generate test cases such that the output for that test case 
lies in the output equivalence class. Determining test cases for output classes may 
be more difficuIt, but output classes have been found to reveal errors that are not 
revealed by just considering the input classes. 

9.2.2 Boundary Value Analysis 

It has been observed that pro grams that work correctly for a set of values in an 
equivalence class laiion some special values. These values often lie on the bound
ary of the equivalence class. Test cases that have values on the boundaries of 
equivalence classes are therefore likely to be "high-yield" test cases, and select
ing such test cases is the aim of the boundary value analysis. In boundary value 
analysis [Mye79], we choose an input for a test case from an equivalence class, 
such that theinput lies at the edge of the equivalence classes. Boundary values for 
each equivalence class, including the equivalence classes of the output, should be 
covered. Boundary value test cases are also called "extreme cases." Hence, we can 
say that a boundary value test case is a set of input data that lies on the edge or 



www.manaraa.com

9.2. Functional Testing 415 

boundary of a dass of input data or that generates output that lies at the boundary 
of a dass of output data. 

In ease of ranges, for boundary value analysis it is useful to seleet the boundary 
elements of the range and an invalid value just beyond the two ends (for the two 
invalid equivalenee dasses). So, ifthe range is 0.0:s x:s 1.0, then the test eases are 
0.0, 1.0 (valid inputs), and -0.1, and 1.1 (for invalid inputs). Similarly, ifthe input 
is a list, attention should be foeused on the first and last elements of the list. We 
should also eonsider the outputs for boundary value analysis. If an equivalence dass 
can be identified in the output, we should try to generate test cases that will produce 
the output that lies at the boundaries of the equivalence dasses. Furthermore, we 
should try to form test cases that will produce an output that does not lie in the 
equivalenee dass. (If we can produce an input case that produees the output outside 
the equivalence dass, we have detected an error.) 

9.2.3 Cause-Effect Graphing 

One weakness with the equivalence dass partitioning and boundary value meth
ods is that they consider eaeh input separately. That is, both concentrate on the 
conditions and dasses of one input. They do not consider combinations of input 
circumstances that may form interesting situations that should be tested. One way 
to exercise combinations of different input conditions is to consider all valid com
binations of the equivalence dasses of input conditions. This simple approach will 
result in an unusually large number of test cases, many of which will not be useful 
for revealing any new errors. For example, if there are n different input conditions, 
such that any combination of the input conditions is valid, we will have 2" test 
cases. 

Cause-effect graphing [Mye79] is a technique that aids in selecting combinations 
of input conditions in a systematic way, such that the number of test cases does 
not become unmanageably large. The technique starts with identifying causes and 
effects of the system under testing. A cause is a distinct input condition, and an 
effect is a distinct output condition. Each condition forms anode in the cause-effect 
graph. The conditions should be stated such that they can be set to either true or 
false. For example, an input condition can be "file is empty," which can be set to 
true by having an empty input file, and false by a nonempty file. After identifying 
the causes and effects, for each effect we identify the causes that can produce 
that effect and how the conditions have to be combined to make the effect true. 
Conditions are combined using the Boolean operators "and," "or," and "not," which 
are represented in the graph by &, I, and ~. Then for each effect, all combinations of 
the causes that the effect depends on which will make the effect true, are generated 
(the causes that the effect does not depend on are essentially "don't care"). By 
doing this, we identify the combinations of conditions that make different effects 
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Causes: 
cl. Command is credit 
c2. Command is debit 
c3. Account number is valid 
c4. Transaction_amt is valid 

Effects: 
e 1. Print "invalid command" 
e2. Print "invalid accounLnumber" 
e3. Print "Debit amount not valid" 
e4. Debit account 
eS. Credit account 

FIGURE 9.2. List of causes and effects. 

true. A test case is then generated for each combination of conditions, which make 
some effect true. 

Let us illustrate this technique with a small example. Suppose that for a bank 
database there are two commands allowed: 

credit accLnumber 
debit accLnumber 

transaction_amount 
transaction_amount 

The requirements are that if the command is credit and the accLnumber is valid, 
then the account is credited. If the command is debit, the acctJlumber is valid, and 
the transaction_amount is valid (less than the balance), then the account is debited. 
If the command is not valid, the account number is not valid, or the debit amount 
is not valid, a suitable message is generated. We can identify the following causes 
and effects from these requirements, shown in Figure 9.2. 

The cause-effect of this is shown in Figure 9.3. In the graph, the cause-effect 
relationship of this example is captured. For all effects, one can easily determine 
the causes each effect depends on and the exact nature of the dependency. For 
example, according to this graph the effect eS depends on the causes c2, c3, and 
c4 in a manner such th.at the effect eS is enabled when all c2, c3, and c4 are true. 
Similarly, the effect e2 is enabled if c3 is false. 

From this graph, a list of test cases can be generated. The basic strategy is to set 
an effect to 1 and then set the causes that enable this condition. The condition of 
causes forms the test case. A cause may be set to false, true, or don't care (in the 
case when the effect does not depend at all on the cause). To do this for all the 
effects, it is convenient to use adecision table. The decision table for this example 
is shown in Figure 9.4. 

This table lists the combinations of conditions to set different effects. Each combi
nation of conditi9ns in the table for an effect is a test case. Together, these condition 
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FIGURE 9.3. The cause-effect graph. 

SNo. I 2 3 4 5 

cl 0 x x 
C2 0 x I x 
c3 x 0 I 
c4 x x 0 

el 
e2 I 
e3 
e4 
e5 

FIGURE 9.4. Decision table for the cause-effect graph. 
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combinations check for various effects the software should display. For example, 
to test for the effect e3, both c2 and c4 have to be set. That is, to test the effect 
"Print debit amount not valid," the test case should be: Command is debit (setting 
c2 to True), the account number isvalid (setting c3 to False), and the trans action 
money is not proper (setting c4 to False). 

Cause-effect graphing, beyond generating high-yield test cases, also aids the un
derstanding of the functionality of the system, because the tester must identify 
the distinct causes and effects. There are methods of reducing the number of test 
cases generated by proper traversing of the graph. Once the causes and effects are 
listed and their dependencies specified, much of the remaining work can also be 
automated. 

9.2.4 Special Cases 

It has been seen that pro grams often produce incorrect behavior when inputs form 
some special cases. The reason is that in programs, some combinations of inputs 
need special treatment, and providing proper handling for these special cases is 
easily overlooked. For example, in an arithmetic routine, if there is a division 
and the divisor is zero, some special action has to be taken, which could easily 
be forgotten by the programmer. These special cases form particularly good test 
cases, which can reveal errors that will usually not be detected by other test cases. 

Special cases will often depend on the data structures and the function of the 
module. There are no rules to determine special cases, and the tester has to use 
his intuition and experience to identify such test cases. Consequently, determining 
special cases is also called errar guessing. 

The psychology is particularly important for error guessing. The tester should play 
the "devil's advocate" and try to guess the incorrect assumptions the programmer 
could have made and the situations the programmer could have overlooked or 
handled incorrectly. Essentially, the tester is trying to identify error prone situations. 
Then test cases are written for these situations. For example, in the problem of 
finding the number of different words in a file (discussed in earlier chapters) some 
ofthe special cases can be: file is empty, only one word in the file, only one word in 
a line, some empty lines in the input file, presence of more than one blank between 
words, all words are the same, the words are already sorted, and blanks at the start 
and end of the file. 

Incorrect assumptions are usually made because the specifications are not complete 
or the writer of specifications may not have stated some properties, assurning 
them to be obvious. Whenever there is reliance on tacit understanding rather than 
explicit statement of specifications, there is scope for making wrong assumptions. 
Frequently, wrong assumptions are made about the environments. However, it 
should be pointyd out that special cases depend heavily on the problem, and the 
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tester should really try to "get into the shoes" ofthe designer and coder to determine 
these cases. 

9.3 Structural Testing 

In the previous section we discussed functional testing, which is concerned with 
the function that the tested prograrn is supposed to perform and does not deal with 
the internal structure of the program responsible for actually implementing that 
function. Thus functional testing is concerned with functionality rather than im
plementation of the pro gram. Various criteria for functional testing were discussed. 
Structural testing, on the other hand is concerned with testing the implementation 
of the program. The intent of structural testing is not to exercise all the different 
input or output conditions (although that may be a by-product) but to exercise the 
different programming structures and data structures used in the prograrn. 

To test the structure of a program, structural testing aims to achieve test cases that 
will force the desired coverage of different structures. Various criteria have been 
proposed for this. Unlike the criteria for functional testing, which are frequently 
imprecise, the criteria for structural testing are generally quite precise as they are 
based on pro gram structures, which are formal and precise. Here we will discuss 
three different approaches to structural testing: control flow-based testing, data 
flow-based testing, and mutation testing. 

9.3.1 Control Flow-Based Criteria 

Most common structure-based criteria are based on the control flow of the program. 
In these criteria, the control flow graph of a program is considered and coverage 
of various aspects of the graph are specified as criteria. Hence, before we consider 
the criteria, let us precisely define a control flow graph for a program. 

Let the controlflow graph (or simply flow graph) of a program P be G. Anode in 
this graph represents a block of statements that is always executed together, i.e., 
whenever the first statement is executed, allother statements are also executed. 
An edge (i, j) (from node i to node j) represents a possible transfer of control 
after executing the last statement of the block represented by node i to the first 
statement of the block represented by node j. Anode corresponding to a block 
whose first statement is the start statement of P is called the start node of G, and a 
node corresponding to a block whose last statement is an exit statement is called 
an exit node [RW85]. A path is a finite sequence of nodes (nl, n2, ... , nk), k > 1, 
such that there is an edge (ni, ni+l) for all nodes ni in the sequence (except the last 
node nk). A complete path is a path whose first node is the start node and the last 
node is an exit node. 
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Now let us consider control flow-based criteria. Perhaps the simplest coverage 
criteria is statement coverage, which requires that each statement of the program 
be executed at least once during testing. In other words, it requires that the paths 
executed during testing include all the nodes in the graph. This is also called the 
all-nodes criterion [RW85]. This coverage criterion is not very Strong, and can 
leave errors undetected. For example, if there is an if statement in the program 
without having an else clause, the statement coverage criterion for this statement 
will be satisfied by a test case that evaluates the condition to true. No test case is 
needed that ensures that the condition in the if statement evaluates to false. This 
is a serious shortcoming because decisions in programs are potential sources of 
errors. As an example, consider the following function to compute the absolute 
value of a number: 

int abs (x) 
int x· , 
{ 

if (x >= 0) x = o - x; 
return (x) 

} 

This pro gram is clearly wrong. Suppose we execute the function with the set of test 
cases { x=O } (i.e., the set has only one test case). The statement coverage criterion 
will be satisfied by testing with this set, but the error will not be revealed. 

A little more general coverage criterion is branch coverage, which requires that 
each edge in the control flow graph be traversed at least once during testing. In other 
words, branch coverage requires that each decision in the program be evaluated to 
true and false values at least once during testing. Testing based on branch coverage 
is often called branch testing. The 100% branch coverage criterion is also called 
the all-edges criterion [RW85]. Branch coverage implies statement coverage, as 
each statement is apart of some branch. In other words, Cbrallch =} C stmt • In the 
preceding example, a set of test cases satisfying this criterion will detect the error. 

The trouble with branch coverage comes if adecision has many conditions in it 
(consisting of a Boolean expression with Boolean operators and and or). In such 
situations, adecision can evaluate to true and false without actually exercising 
all the conditions. For example, consider the following function that checks the 
validity of a data item. The data item is valid if it lies between 0 and 100. 

int check(x) 
int x; 
{ 

} 

if «x >= ) && (x <= 200)) 
check = True; 

else check = False; 
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The module is incorrect, as it is checking for x :s 200 instead of 100 (perhaps 
a typing error made by the programmer). Suppose the module is tested with the 
following set oftest cases: {x = 5, x = -5 }. The branch coverage criterion will be 
satisfied for this module by this set. However, the error will not be revealed, and 
the behavior of the module is consistent with its specifications for all test cases in 
this set. Thus, the coverage criterion is satisfied, but the error is not detected. This 
occurs because the decision is evaluating to true and false because of the condition 
(x 2: 0). The condition (x :s 200) never evaluates to false during this test, hence 
the error in this condition is not revealed. 

This problem can be resolved by requiring that all conditions evaluate to true and 
false. However, situations can occur where adecision may not get both true and 
false values even if each individual condition evaluates to true and false. An obvious 
solution to this problem is to require decisionlcondition coverage, where all the 
decisions and all the conditions in the decisions take both true and false values 
during the course of testing. 

Studies have indicated that there are many errors whose presence is not detected by 
branch testing because some errors are related to some combinations of branches 
and their presence is revealed by an execution that follows the path that inc1udes 
those branches. Hence a more general coverage criterion is one that requires all 
possible paths in the control fiow graph be executed during testing. This is called the 
path coverage criterion or the all-paths criterion, and the testing based on this cri
terion is often called path testing. The difficulty with this criterion is that programs 
that contain loops can have an infinite number of possible paths. Furthermore, not 
all paths in a graph may be "feasible" in the sense that there may not be any inputs 
for which the path can be executed. It should be c1ear that C palh =} Cbrallch. 

As the path coverage criterion leads to a potentially infinite number of paths, some 
efforts have been made to suggest criteria between the branch coverage and path 
coverage. The basic aim of these approaches is to select a set of paths that ensure 
branch coverage criterion and try some other paths that may help reveal errors. One 
method to limit the number of paths is to consider two paths the same if they differ 
only in their subpaths that are caused due to the loops. Even with this restrietion, 
the number of paths can be extremely large. 

Another such approach based on the cyc10matic complexity has been proposed in 
[McC76]. The test criterion is that if the cyc10matic complexity of a module is 
V, then at least V distinct paths must be executed during testing. We have seen 
that cyc10matic complexity V of a module is the number of independent paths in 
the fiow graph of a module. As these are independent paths, all other paths can 
be represented as a combination of these basic paths. These basic paths are finite, 
whereas the total number of paths in a module having loops may be infinite. 

It should be pointed out that none of these criteria is sufficient to detect all kind 
of errors in programs. For example, if a program is missing some contro! fiow 
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paths that are needed to check for a special value (like pointer equals nil and 
divisor equals zero), then even executing all the paths will not necessarily detect 
the error. Similarly, if the set of paths is such that they satisfy the all-path criterion 
but exercise only one part of a compound condition, then the set will not reveal 
any error in the part of the condition that is not exercised. Hence, even the path 
coverage criterion, which is the strongest of the criteria we have discussed, is not 
strong enough to guarantee detection of all the errors. None of the three major 
criteria discussed earlier satisfy the applicability axiom or the antidecomposition 
axiom. All of them satisfy the antiextensionality axiom, and the anticomposition 
axiom is satisfied only by the path coverage criterion. It is left as an exercise to the 
reader to determine which axioms are met and which are not. 

9.3.2 Data Flow-Based Testing 

Now we discuss some criteria that select the paths to be executed during testing 
based on data flow analysis, rather than control flow analysis. In the previous 
chapter, we discussed use of data flow analysis for static testing of programs. In 
the data flow-based testing approaches, besides the control flow, information about 
where the variables are defined and where the definitions are used is also used to 
specify the test cases. The basic idea behind data flow-based testing is to make sure 
that during testing, the definitions of variables and their subsequent use is tested. 
lust like the aIl-nodes and all-edges criteria try to generate confidence in testing by 
making sure that at least all statements and all branches have been tested, the data 
flow testing tries to ensure some coverage of the definitions and uses of variables. 
Approaches for use of data flow information have been proposed in [LK83, RW85]. 
Our discussion here is based on the family of data flow-based testing criteria that 
were proposed in [RW85]. We discuss some of these criteria here. 

For data flow-based criteria, a definition-use graph (dejluse graph, for short) for 
the program is first constructed from the control flow graph of the program. A 
statement in anode in the flow graph representing a block of code has variable 
occurrences in it. A variable occurrence can be one of the following three types 
[RW85]: 

• deJrepresents the definition of a variable. The variable on the left-hand side 
of an assignment statement is the one getting defined . 

• c-use represents computational use of a variable. Any statement (e.g., read, 
write, an assignment) that uses the value of variables for computational pur
poses is said to be making c-use of the variables. In an assignment statement, 
all variables on the right-hand side have a c-use occurrence. In a read and a 
write statement, all variable occurrences are of this type. 

• p-use represents predicate use. These are all the occurrences of the variables 
in a predicate (i.e., variables whose values are used for computing the value 
of the predicate), which is used for transfer of contro!. 
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Based on this classification, the following can be defined [RW85]. Note that c
use variables mayaiso affect the ftow of control, though they do it indirect1y by 
affecting the value of the p-use variables. Because we are interested in the ftow of 
data between nodes, a c-use of a variable x is considered global c-use if there is 
no def of x within the block preceding the c-use. With each node i, we associate 
all the global c-use variables in that node. The p-use is associated with edges. 
If XI, X2, .•• ,Xn had p-use occurrences in the statement of a block from where 
two edges go to two different blocks j and k (e.g., with an if then else), then 
XI, ..• , xn are associated with the two edges (i, j) and Ci, k). 

A path from node i to node j is called a def-clear path with respect to (w.r.t.) a 
variable X if there is no def of X in the nodes in the path from i to j (nodes i and j 
may have a dei). Similarly, a def-clear path w.r.t. x from anode i to an edge (j, k) 
is one in which no node on the path contains adefinition of x. A def of a variable 
x in anode i is aglobai de/, if it is the last def of x in the block being represented 
by i, and there is a def-clear path from i to some node with aglobai c-use of x. 
Essentially, a def is aglobai def if it can be used outside the block in which it is 
defined. 

The def/use graph for a pro gram P is constructed by associating sets of variables 
with edges and nodes in the ftow graph. For anode i, the set def(i) is the set of 
variables for which there is aglobaI def in the node i, and the set c-use(i) is the set 
of variables for which there is aglobaI c-use in the node i. For an edge Ci, j), the 
set p-use(i, j) is the set of variables for which there is a p-use for the edge (i, j). 

Suppose a variable x is in def(i) of anode i. Then, dcu(x, i) is the set of nodes, 
such that each node has x in its c-use, x E def(i), and there is a def-clear path 
from i to j. That is, dcu(x, i) rt'presents all those nodes in which the (global) c-use 
of x uses the value assigned by the def of x in i. Similarly, dpu(x, i) is the set of 
edges, such that each edge has x in its p-use, x E defCi), and there is a def-clear 
path from i to (j, k). That is, dpu(x, i) represents all those edges in which the p-use 
of x uses the value assigned by the def of x in i. 

Based on these definitions proposed in [RW85], a family of test case selection 
criteria were proposed in [RW85], a few of which we discuss here. Let G be the 
def/use graph for a program, and let P be a set of complete paths of G (i.e., path 
representing a complete execution of the program). A test case selection criterion 
defines the contents of P. 

P satisfies the all-defs criterion if for every node i in G and every x in defCi), P 
includes a def-c1ear path w.r.t. x to some member of dcu(x, i) or some member 
of dpu(x, i). This criterion says that for the def of every variable, one of its uses 
(either p-use or c-use) must be included in a path. That is, we want to make sure 
that during testing the use of the definitions of all variables is tested. 

The all-p-uses criterion requires that for every x E defCi), P include a def-clear 
path w.r.t. x ftom i to so me member of dpu(x, i). That is, according to this criterion 
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all the p-uses of all the definitions should be tested. However, by this criterion a 
c-use of a variable may not be tested. The all-p-uses, some-c-uses criterion requires 
that all p-uses of a variable definition must be exercised, and some c-uses must also 
be exercised. Similarly, the all-c-uses, some-p-uses criterion requires that all c-uses 
of a variable definition be exercised, and some p-uses must also be exercised. 

The all-uses criterion requires that all p-uses and all c-uses of adefinition must be 
exercised. That is, the set P must include, for every node i and every x E def(i), 
a def-clear path w.r.t. x from i to all elements of dcu(x, i) and to all elements of 
dpu(x, 0. A few other criteria have been proposed in [RW85]. 

In terms of the number of test cases that might be needed to satisfy the data flow
based criteria, it has been shown that though the theoreticallimit on the size of the 
test case set is up to quadratic in the number of two-way decision statements in 
the pro gram, the actual number of test cases that satisfy a criterion is quite small 
in practice [Wey90]. Empirical observation in [Wey90] seems to suggest that in 
most cases the number of test cases grows linearly with the number of two-way 
decisions in the program. 

As mentioned earlier, a criterion Cl includes another criterion C2 (represented by 
Cl=> C2 ) if any set of test cases that satisfy criterion Cl also satisfy the criterion 
C2. The inc1usion relationship between the various data flow criteria and the control 
flow criteria is given in Figure 9.5 [RW85]. 

all-paths (path overage) 

~ 
/wr 

all-c-usesl all-p-usesl ,omT/Somre, 

all-defs all-p-uses 

~ 
all-edges (branch coverage) 

~ 
all-nodes (statement coverage) 

FIGURE 9.5. Relationship between different criteria. 
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It should be quite clear that all-paths will include all-uses and all other structure
based criteria. All-uses, in turn, includes all-p-uses, all-defs, and all-edges. How
ever, all-defs does not include all-edges (and the reverse is not true). The reason is 
that all-defs is focusing on all definitions getting used, while all-edges is focusing 
on all decisions evaluating to both true and false. For example, adecision may 
evaluate to true and false in two different test cases, but the use of adefinition of a 
variable x may not have been exercised. Hence, the all-defs and all-edges criteria 
are, in some sense, incomparable. 

As mentioned earlier, inclusion does not imply that one criterion is always better 
than another. At best, it means that if the test case generation strategy for two criteria 
Cl and Cz is similar, and if Cl =} Cz, then statistically speaking, the set oftest cases 
satisfying Cl will be better than a set of test cases satisfying Cz. The experiments 
reported in [FW93b] show that no one criterion (out of a set of control ftow-based 
and data ftow-based criteria) does significantly better than another consistently. 
However, it does show that testing done by using all-branch or all-uses criterion 
generally does perform better than randomly selected test cases. 

9.3.3 An Example 

Let us illustrate the use of some of the control ftow-based and data ftow-based 
criteria through the use of an example. Consider the following example of a simple 
pro gram for computing x Y for any integer x and y [RW85]: 

1. scanf (x, y); if (y $<$ 0) 
2. pow = 0 - y; 
3. else pow = y; 
4. z = 1. 0; 
5. while (pow != 0) 
6. { z = z * x; pow pow - 1 ; } 

7. if (y $<$ 0) 
8. z = 1. O/z; 
9. printf(z); 

The def/use graph for this program is given in the Figure 9.6 [RW85]. In the graph, 
the line numbers given in the code segment are used to number the nodes (each 
line contains all the statements of that block). For each node, the def set (i.e., the 
set of variables defined in the block) and the c-use set (Le., the set of variables that 
have a c-use in the block) are given along with the node. For each edge, if the p-use 
set is not empty, it is given in the graph. 

The various sets are easily determined from the block of code representing anode. 
To determine the dcu and dpu the graph has to be traversed. The dcu for various 
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def= {pow} 
c-use = {y} 

def = {z, pow} 
c-use = {x, z, pow} 

~ __ --I~ 9 def = cJl 
c-use = {z} 

FIGURE 9.6. def/use graph for the example [RW85]. 

node and variable combination is given next: 

(node, var) 

(1, x) 
(1, y) 
(2, pow) 
(3, pow) 
(4, z) 
(6, z) 
(6, pow) 
(8, z) 

dcu 

{6) 
{2,3) 
{6} 
{6} 
{6, 8, 9} 
{6, 8, 9} 
{6) 
{9} 

dpu 

<P 
((l,2), (1,3), (7, 8), (7, 9)} 
{(5, 6), (5, 7)} 
{(5, 6), (5, 7)} 

<P 

<P 
{(5, 6), (5, 7)} 

<P 

Now let us discuss the issue of generating test cases for this program using various 
criteria. We can divide the problem of test case selection into two parts. First we 
identify some paths that together satisfy the chosen criterion. Then we identify 
the test cases that will execute those paths. As the first issue is more relevant 
when discussing coverage criteria, frequently in testing literature only the paths 
that satisfy the criterion are discussed. While selecting paths that satisfy a given 
coverage brings us to the question of whether the path is feasible, that is, if it is 
possible to have some test data that will execute that path. It is known that a program 
may contain paths that are not feasible. A simple example is in a pro gram with a 
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for loop. In such a program, no path that executes the loop fewer than the number 
of times specified by the f or loop is feasible. In general, the issue of feasibility of 
paths cannot be solved algorithrnically, as the problem is undecidable. However, 
the programmer can use his judgment and knowledge about the program to decide 
whether or not a particular path is infeasible. With the presence of infeasible paths, 
it is not possible to fully satisfy the criterion like all-uses, and the programmer will 
have to use his judgment to avoid considering the infeasible paths. 

Let us first consider the all-edges criterion, which is the same as 100% branch 
coverage. In this we want to make sure that each edge in the graph is traversed 
during testing. For this, if the paths executed by the test cases inc1ude the following 
paths, we can see that all edges are indeed covered: 

(1;2;4;5;6;7;8;9),(1;3;4;5;7;9) 

Here we could have chosen a set of paths with (1; 2; 4; 5; 6; 7; 9) as one of them. 
But a c10ser exarnination of the pro gram will tell us that this path is not feasible, 
as going from 1 to 2 implies that y is negative, which in turn implies that from 7 
we must go to 8 and cannot go directly to 9. As can be seen even from this simple 
example, it is very easy to have paths that are infeasible. To execute the selected 
paths (or paths that inc1ude these paths), the following two test cases will suffice: 
(x = 3, Y = 1) and (x = 3, y = -1). That is, a set consisting of these two test cases 
will satisfy the all-edges criterion. 

Now let us consider the all-defs criterion, which requires that for all definitions 
of all variables, at least one use (c-use or p-use) must be exercised during testing. 
First let us observe that the set of paths given earlier for the all-edges criterion 
does not satisfy the all-uses criterion. The reason is that to satisfy all-uses, we must 
have some path in which the defs in node 6 (i.e., for z and pow) also get used. As 
the only way to get the def of pow in node 6 to be used is to visit 6 again, these 
paths fai! to satisfy the criterion. The following set of paths will satisfy the all-defs 
criterion: 

(1;2;4;5;6;5;6;7;8;9),(1;3;4;5;6;7;9) 

Let's consider the first path in this. The prefix 1; 2; 4; 5; 6; ensures that all the 
defs of nodes 1,2, and 4 have been used. Having another 5; 6 after this ensures 
that the defs in node 6 are used. This is not needed by the branch coverage, but it 
comes because of the def-use constraints. It can also be easily seen that the set of 
test cases selected for the branch coverage will not suffice here. The following two 
test cases will satisfy the criteria: (x = 3, y = 4) and (x = 3, y = -2). 

Let us finally consider the all-uses criterion, which requires that all p-uses and all 
c-uses of all variable definitions be tried during testing. In other words, we have 
to construct a set of paths that inc1ude a path from any node having a def to all 
nodes in its dcu and its dpu. The dcu and dpu sets for all nodes were given earlier. 
In this exampJe, as it turns out, the paths given earlier for all-defs also satisfy the 
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all-uses criterion. Hence, the corresponding test cases will also suffice. We leave 
the details of this as an exercise for the reader. 

9.3.4 Mutation Testing 

Mutation testing is another structural testing technique that differs fundamentally 
from the approaches discussed earlier. In control flow-based and data flow-based 
testing, the focus was on which paths to execute during testing. Mutation testing 
does not take a path-based approach. Instead, it takes the program and creates 
many mutants of it by making simple changes to the program. The goal of testing 
is to make sure that during the course of testing, each mutant produces an output 
different from the output of the original program. In other words, the mutation 
testing criterion does not say that the set of test cases must be such that certain 
paths are executed; instead it requires the set of test cases to be such that they 
can distinguish between the original program and its mutants. The description of 
mutation testing given here is based on [DLS78, Mat94]. 

In hardware, testing is based on some fault models that have been developed and 
that model the actual faults elosely. The fault models provide a set of simple faults, 
combination of which can model any fault in the hardware. In software, however, 
no usch fault model exists. That is why most of the testing techniques try to guess 
where the faults might lie and then select the test cases that will reveal those faults. 
In mutation testing, faults of some predecided types are introduced in the pro gram 
being tested. Testing then tries to identify those faults in the mutants. The idea is 
that if all these "faults" can be identified, then the original program should not have 
these faults; otherwise they would have been identified in that program by the set 
of test cases. 

Clearly this technique will be successful only if the changes introduced in the main 
program capture the most Iikely faults in some form. This is assumed to hold due 
to the competent programmer hypo thesis and the coupling effect. The competent 
programmer hypothesis says that programmers are generally very competent and 
do not create pro grams at random, and for a given problem, a programmer will 
produce a program that is very "elose" to a correct program. In other words, a correct 
program can be constructed from an incorrect program with some minor changes in 
the program. The coupling effect says that the test cases that distinguish pro grams 
with minor differences with each other are so sensitive that they will also distinguish 
programs with more complex differences. In [Mat94], some experiments are cited 
in which it has been shown that the testdata that can distinguish mutants created 
by simple changes can also distinguish up to 99% of the mutants that have been 
created by applying aseries of simple changes. 

Now let us discuss the mutation testing approach in a bit more detail. For a pro
gram under test P, mutation testing prepares a set of mutants by applying mutation 
operators on the text of P. The set of mutation operators depends on the language 
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in which P is written. In general, a mutation operator makes a small unit change 
in the program to produce a mutant. Examples of mutation operators are: replace 
an arithmetic operator with some other arithmetic operator, change an array refer
ence (say, from A to B), replace a constant with another constant of the same type 
(e.g., change a constant to 1), change the label for a goto statement, and replace 
a variable by some special value (e.g., an integer or a real variable with 0). Each 
application of a mutation operator results in one mutant. As an example, consider 
a mutation operator that replaces an arithmetic operator with another one from the 
set { +,-, *, **, / }.If a program P contains an expression 

then this particular mutation operator will produce a total of eight mutants (four by 
replacing '*' and four by replacing '-'). The mutation operators that make exactly 
one syntactic change in the pro gram to produce a mutant are said to be of first 
order. If the coupling effect holds, then the first-order mutation operators should 
be sufficient, and there is no need for higher-order mutation operators. 

Mutation testing of a pro gram P proceeds as folIows. First a set of test cases T is 
prepared by the tester, and P is tested by the set of test cases in T. If P fails, then T 
reveals some errors, and they are corrected. If P does not fail during testing by T, 
then it could mean that either the pro gram P is correct or that P is not correct but 
T is not sensitive enough to detect the faults in P. To rule out the latter possibility 
(and therefore to claim that the confidence in P is high), the sensitivity of T is 
evaluated through mutation testing and more test cases are added to T until the set 
is considered sensitive enough for "most" faults. So, if P does not fail on T, the 
following steps are performed [Mat94]: 

1. Generate mutants for P. Suppose there are N mutants. 

2. By executing each mutant and P on each test case in T, find how many mu
tants can be distinguished by T. Let D be the number of mutants that are 
distinguished; such mutants are called dead. 

3. For each mutant that cannot be distinguished by T (calIed a live mutant), find 
out which of them are equivalent to P. That is, determine the mutants that 
will always produce the same output as P. Let E be the number of equivalent 
mutants. 

4. The mutation score is computed as D /(N - E). 

5. Add more test cases to T and continue testing until the mutation score is 1. 

In this approach, for the mutants that have not been distinguished by T, their 
equivalence with P has to be determined. As determining the equivalence of two 
programs is undecidable, this cannot be done algorithmically and will have to be 
done manually (tools can be used to aid the process). There are many situations 
where this qn be determined easily. For example, if a condition x <= ° (in a 
program to c()mpute the absolute value, say) is changed to x < 0, we can see 
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immediately that the mutant produced through this change will be equivalent to 
the original program P, as it does not matter which path the program takes when the 
value of x is O. In other situations, it may be very hard to determine equivalence. 
One thing is dear: the tester will have to compare P with all the live mutants to 
determine which are equivalent to P. This analysis can then be used to add further 
test cases to T in an attempt to kill those live mutants that are not equivalent. 

Determining test cases to distinguish mutants from the original program is also 
not easy. In an attempt to form a test case to kill a mutant, a tester will have to 
examine the mutant (and the original program) and then reason which test case 
is likely to distinguish the mutant. This can be a complex exercise, depending on 
the complexity of the pro gram being tested and the exact nature of the difference 
between the mutant and the original program. Suppose that a statement at line I of 
the pro gram P has been mutated to produce the mutant M. The first property that 
a test case t needs to have to distinguish M and P is that the test case should force 
the execution to reach the statement at I. Clearly, without this, M and P will not 
behave differently. The test case t should also be such that after execution of the 
statement at I, different states are reached by P and M. Before reaching I, the state 
while executing the programs P and M will be the same as the programs are same 
until/. If the test case is such that after executing the statement at I, the execution 
of the programs P and M either takes a different path or the values in the state are 
different, then there is a possibility that this difference will be manifested in output 
being different. If the state after executing the statement at 1 continues to be the 
same in P and M, we will not be able to distinguish P and M. Finally, t should be 
such that when P and M terminate, their states are different (assuming that P and 
M output their complete state at the end only). As one can imagine, constructing 
a test case that will satisfy these three properties is not going to be, in general, an 
easy task. 

Finally, let us discuss the issue of detecting errors in the original program P, which 
is one of the basic goals of testing. In mutation testing, errors in the original 
program are frequently revealed when test cases are being designed to distinguish 
mutants from the original pro gram. If no errors are detected and the mutation score 
reaches I, then the testing is considered adequate by the mutation testing criterion. 
It should be no ted that even if no errors have been found in the program under test 
during mutation testing, the confidence in the testing increases considerably if the 
mutation score of 1 is achieved, as we know that the set of test case with which P 
has been tested has been able to kill all (nonequivalent) mutants of P. This suggests 
that if P had an error, one of its mutants would have been doser to the correct 
program, and then the test case that distinguished the mutant from P would have 
also revealed that P is incorrect (it is assumed that the output of all test cases are 
evaluated to see if P is behaving correctly). 

Some studies have been done to show that mutation testing does increase the con
fidence in testing and that it performs quite weIl compared to other methods of 
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testing. Like other structural testing methods, it does not satisfy the applicability 
axiom because of the undecidability of determining equivalence. However, as de
termining equivalence is made apart of the testing activity, it can also be viewed 
as satisfying the applieability axiom. It also satisfies the antiextensionality, antide
composition, and anticomposition axioms, as weH as other axioms [Wey86]. It has 
also been used to compare the test cases generated by different test case generation 
schemes-the mutation score is used as the metric for comparison; the higher the 
mutation score, the beuer the test case set or the test case generation strategy. 

One of the main problems of mutation testing relates to its performance. The 
number of mutants that ean be generated by applying first-order mutation operators 
is quite large and depends on the language and the size of the mutation operator set. 
For a FORTRAN program containing L lines of code to which the mutation operator 
can be applied, the total number of mutants is of the order of L 2 [Mat94]. These 
many programs have to be compiled and exeeuted on the selected test case set. 
This requires an enormous amount of computer time. For example, for a 950-1ine 
program, it was estimated that a total of about 900,000 mutants will be produced, 
the testing of which would take more than 70,000 hours of time on a Sun SPARe 
station [Mat94]. Further, the tester might have to spend considerable time doing 
testing, as he will have to examine many mutants, besides the original pro gram, 
to determine whether or not they are equivalent. These performance issues make 
mutation testing impractical for large programs. 

9.3.5 Test Case Generation and Tool Support 

Onee a coverage criterion is decided on, two problems have to be solved to use 
the chosen eriterion for testing. The first is to decide if a set of test cases satisfy 
the criterion, and the seeond is to generate a set of test cases for a given eriterion. 
Deciding whether a set of test eases satisfy a criterion without the aid of any tools is 
a cumbersome task, though it is theoreticaHy possible to do manually. For almost all 
the structural testing techniques, tools are used to determine whether the criterion 
has been satisfied. Generally, these tools will provide feedback regarding what 
needs to be tested to fuHy satisfy the criterion. 

To generate the test cases, tools are not that easily available, and due to the nature 
of the problem (Le., undecidability of "feasibility" of a path), a fully automated 
tool for selecting test cases to satisfy a criterion is generally not possible. Hence, 
tools can, at best, aid the tester. One method for generating test cases is to randomly 
select test data until the desired criterion is satisfied (which is determined by a tool). 
This can result in a lot of redundant test cases, as many test cases will exercise the 
same paths. 

As test case generation cannot be fuHy automated, frequently the test case selection 
is done manually by the tester by performing structural testing in an iterative 
manner, starting with an initial test case set and seleeting more test cases based on 
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the feedback provided by the tool for test case evaluation. The test case evaluation 
tool can tell which paths need to be executed or which mutants need to be killed. 
This information can be used to select further test cases. For example, to select a 
test case to execute some path, statk data flow analysis too1s can be used to decide 
what input va1ues should be chosen so that when the program is executed this 
particular path is executed. Symbolic evaluation (discussed in Chapter 8) tools can 
also be quite useful here. The paths that need to be executed during testing can be 
treated as programs in their own right and symbolically executed. With symbolic 
execution, the conditions on input variables that will enable this path to be executed 
can be determined. 

However, even with the aid of tools, selecting test cases is not a simple mechanical 
process. Ingenuity and creativity of the tester are still important, even with the 
availability of the tools to determine the coverage. Because of this, and for other 
reasons, the criteria are often weakened. For example, instead of requiring 100% 
coverage of statements and branches, the goal might be to achieve some acceptably 
high percentage (but less than 100%). 

Consider a tool for statement or branch coverage, which collects information about 
which statements or branches have been executed during testing. To achieve this, 
the execution of the program during testing has be closely monitored. This requires 
that the program be ins trumen ted so that required data can be collected. Perhaps the 
most common method of instrumenting is to insert some statements called probes 
in the program. The sole purpose of the probes is to generate data about pro gram 
execution during testing that can be used to compute the coverage. With this, we 
can identify three phases in generating coverage data: 

1. Instrument the pro gram with probes. 

2. Execute the program with test cases. 

3. Analyze the results of the probe data. 

Probe insertion can be done automatically by a preprocessor. The analysis of the 
probe data can be done automatically by apostprocessor. The first question is where 
the probes should be inserted. Probes can be inserted after each line of code, but 
that would be wasteful and inefficient. We want to identify segments of statements 
that must be executed together and insert one probe for the segment. A common 
technique is to insert probes where a path splits into multiple paths and where 
multiple paths merge. A different probe is inserted for each path. Different kinds 
of probes can be constructed, and one simple method is to insert probes that keep 
track of the number of times a segment is executed. For example, at some place 
in the pro gram, the preprocessor can insert a probe of the nature count [10] = 

count [10] + 1, which will tell us how many times the particular segment (which 
was numbered 10 by the preprocessor) was executed. 
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Note that such a preprocessor also inserts proper declarations for the data used 
by the probes and has to insert a routine in the end to print the data or invoke the 
postprocessor. The postprocessor, to detennme the statement or branch coverage, 
will need to know where the probes were introduced. Based on the knowledge of 
counts and the placement of the probes, statistics about the coverage is produced. In 
addition, tools point out the statements or branches that have not yet been executed 
during testing. These can then be used to determine the paths that still need to be 
executed. One such coverage tool for C programs is available for the readers from 
the horne page of the book. 

Tools for data fiow-based testing and mutation testing are even more complex. 
Some tools have been built for aiding data fiow-based testing [FWW85, HK92]. 
A data fiow testing tool has to keep track of definitions of variables and their uses, 
besides keeping track of the control fiow graph. For example, the ASSET tool for 
data fiow testing [FWW85] first analyzes a Pascal pro gram unit to determine all 
the definition-use associations. It then instruments the program so that the paths 
executed during testing are recorded. After the program has been executed with the 
test cases, the recorded paths are evaluated for satisfaction of the chosen criterion 
using the definition-use associations generated earlier. The list of definition-use 
associations that have not yet been executed is also output, which can then be used 
by the tester to select further test cases. 

It should be pointed out that when testing a complete pro gram that consists of 
many modules invoked by each other, the presence of procedures considerably 
complicates data fiow testing. The main reason is that the presence of global variable 
creates def-use pairs in which the statements may exist in different procedures, e.g., 
a (global) variable may be defined in one procedure and then used in another. To use 
data fiow-based testing on complete programs (rather than just modules), inter
procedural data fiow analysis will be needed. Though some methods have been 
developed for performing data fiow-based testing on pro grams with procedures 
[HS89], the presence of multiple procedures complicates data fiow-based testing. It 
should be noted that this problem does not arise with statement coverage and branch 
coverage, where there are no speciallinkages between modules. The statement or 
branch coverage of a pro gram can be computed simply from the statement or 
branch coverage of its modules. This is one of the reasons for the popularity of 
these coverage measures and tools. 

In mutation testing, the tool is generaIly given a pro gram P and a set of test cases 
T. The tool has to first use the mutation operations for the language in which P is 
written to produce the mutants. Then P and all the mutants and P are executed with 
T. Based on the output of different programs, the mutation score, and the number 
and identity of dead and live mutants are determined and reported to the tester. The 
score teIls the tester the quality of T according to the mutation criterion, and the 
set of live mutants give the feedback to the tester for selecting further test cases 
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to increase the mutation score. Some mutation testing tools have also been built 
[B+78, D+88]. 

9.4 Testing Object-Oriented Programs 

A software typically undergoes many levels of testing, from unit testing to system 
or acceptance testing. Typically, in unit testing small "units," or modules, of the 
software are tested separately with focus on testing the code of that module. In 
higher-order testing (e.g., acceptance testing), the entire system (or a subsystem) 
is tested with the focus on testing the functionality or external behavior of system. 
Generally, only black box testing is performed at higher levels, while at lower 
levels white box testing is also done. 

If black box testing is to be done, by definition, the test cases are selected indepen
dently of the internal structure of the code. In this case, it clearly does not matter 
whether the software is object-oriented or function-oriented. All the techniques 
mentioned earlier for black box testing can be applied to object-oriented systems. 
However, if the testing is white box, then the test cases are determined based on the 
structure of the code. Consequently, for such testing, the object-oriented structure 
can impact the testing activity. As unit testing is the place where white box testing 
is most Iikely to be used, it is at the unit testing level where different approaches 
may be required for object-oriented software. As the basic unit in object-oriented 
software is typically a class, here we focus on the testing of classes. 

Testing classes is a fundamentally different problem than testing functions, as 
a function (or a procedure) has a clearly defined input-output behavior, while a 
class does not have an input-output behavior specification. We can test a method 
of a class using approaches for testing functions, but we cannot test the class 
using these approaches. So, for testing methods individually, the control ftow
based and data ftow-based structural testing techniques can easily be applied. New 
problems do crop up while doing data ftow-based testing, but some solutions for 
these have been proposed [HR94, PBC93]. However, as one can imagine, and as 
has been formally argued in [PK90], testing of all the methods separately is not 
equivalent to testing the class. Hence, appropriate techniques are needed for testing 
classes. 

Efforts were made earlier for testing abstract data types (ADTs) [GMH81 , JC88, 
Ja189b, JaI92]. As we mentioned earlier, an abstract data type is equivalent to classes 
without inheritance. Hence, these approaches are somewhat limited in scope. More 
recent work has focused on testing of classes, with and without inheritance. In this 
section, we will look at some of these recent approaches. But before we do that, 
let us clearly understand the problems that come in testing classes. 
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9.4.1 Issues in Testing Classes 

Testing c1asses brings in some new issues that are not present in testing functions. 
First, a c1ass cannot be tested directly; only an instance of a c1ass can be tested. 
This means that we test a c1ass indirectly by testing its instances, and a tester must 
create different instances of the c1ass and test them to test the c1ass. An immediate 
problem due to this is how to test an abstract c1ass, which cannot be instantiated 
(e.g., a c1ass in C++ that has pure virtual operations). 

In object-oriented programs, control fiow is characterized by message passing 
among objects, and the control fiow switches from one object to another by inter
object communication. Consequently, there is no sequential control fiow within a 
c1ass like in functions. This lack of sequential control flow within a c1ass requires 
different approaches for testing. Furthermore, in a function, arguments passed to 
the function with global data determine the path of execution within the proce
dure. But, in an object, the state associated with object also influences the path of 
execution, and methods of a c1ass can communicate among themselves through 
this state, because this state is persistent across invocations of methods. Hence, for 
testing objects, the state of an object has to play an important role. 

Thirdly, new issues are introduced due to inheritance. There are basically two rea
sons for problems that arise from inheritance: the structure of inheritance hierarchy 
and the kind of inheritance [SR90]. Let us first consider the structure of the inher
itance hierarchy. Problems start if the hierarchy is a lattice instead of a tree or a 
forest of trees. In such a case, a c1ass at the bottom may inherit some of the features 
more than once (repeated inheritance), or it may inherit a feature that appears with 
the same name in two different ancestors (multiple inheritance). These make the 
c1asses more complex and error-prone. And the second kind of problem is owing to 
the type of inheritance. Suppose the derived c1ass is redefining some of the inher
ited features and there are other inherited features that make use of those redefined 
features, then invocation of such features may give run-time errors. The reason 
is, as we discussed earlier in Chapter 6, due to dynamic binding of operations it 
may not be known until run time whether or not the operation is defined (on the 
object to which a variable is bound). This type of problem does not arise if there 
is only strict inheritance. A detailed discussion on the problems in the validation 
of object-oriented programs can be found in [SR90]. 

Overall, testing of objects can be defined as the process of exercising the routines 
provided by an object with the goal of uncovering errors in the implementation of 
the routines or state ofthe object or both [SR92]. To test an object, we have to test 
the interaction between the methods provided on the object. For this, the problem 
of object testing can be viewed as a search problem for finding the patterns of 
method inyocation of the object under test with different arguments, which will 
yield errors [SR92]. This is particularly important, as there is no order imposed on 
the invocation of the methods of the objects and they can be invoked in any random 
order leading to a large number of patterns. In some sense, by executing various 
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patterns, we are testing the communication between the different methods of the 
object. Directly testing various patterns of method invocation was the approach 
used in [Ja189b, Ja192] for testing abstract data types. The state-based testing ap
proach that we discuss here tests for interaction by changing the state of the object 
under which the methods are tested. An overview of the state based testing method 
is given in [KJ96]. Some of the fonowing discussion is based on this report. 

9.4.2 State-Based Testing 

State-based testing is a technique to test whether or not the methods of a dass 
interact correctly among themselves by monitoring the data members of the dass 
[TR92]. B Y checking whether or not the state of an object is changed in the expected 
way by any particular method of the object, we can exercise the path between the 
definition and use an instance variables of the object. The testing technique is to 
test an the methods of a dass, one by one, against the set of states that the object can 
take. If any of the features does not change the state of the object in the expected 
way, then that method is dedared as containing errors. 

In the state-based testing technique suggested in [TR92], all methods of an object 
are tested one at a time. A method is invoked in an possible states that the object 
can assume, and after each invocation the resulting state is checked to see whether 
or not the method takes the object under test to the expected state. In this form 
of testing, emphasis is on the interaction between methods, that is, whether the 
method is communicating properly with other methods of the object through the 
state of the object. 

Reducing the State Space 

The state space of an object is the Cartesian product of domains of all the data 
members of the object. Clearly, performing state-based testing in an possible states 
of the object is impractical. For state-based testing to be practical, we have to 
reduce the state space without affecting the "coverage" too much. For this, it is 
proposed that for a data member, instead of considering an possible values, consider 
the domain as consisting of some specific values and some general value groups 
[TR92]. 

The specific values are the special values for the data member that are treated 
differently in the code or are described as being of special significance by the 
specification or design. These values can be easily identified by looking at the 
code and the specifications for dasses produced in design. A general value group 
is the group cf values of a data member that are alI considered in the same manner 
in the code and the design specification. Due to this, there is no need to distinguish 
the different values of this group. 
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By using these two approaches, the domain of each data member that needs to be 
considered can be reduced, thereby reducing the overall state space of the object. 
The basic idea behind these approaches is similar to that of equivalence class 
partitioning. We are trying to identifythose groups ofvalues so that ifwe test with 
one member of the group, we can be fairly sure that the outcome will be the same 
if we test with other data members of the group. The group formation is done by 
looking at the code or design specifications, and the basic idea is to reduce the 
number of test cases. As an example, consider the following: 

class Account { 
char *name ; 
int accNum ; 
int balance ; 

} 

The specific values of interest for this class are: 

name = NULL, 
accNum = 0, 
balance = ° 

And the general value groups are: 

name != NULL 
accNum < 0, accNum > ° 
balance< 0, balance> ° 

If we use these specific values and general group values, the state space of account 
object will become: 

{NULL, non-NULL} X 
{ SomeValue < 0, SomeValue > ° } X 
{ SomeValue < 0, SomeValue > ° } 

wh ich is considerably smaller than the original state space, which was 

DOMAIN{string} X DOMAIN{accNum} X DOMAIN{balance} 

State-based testing, as discussed so far, focuses on the changes in state and hence 
may not be suitable for checking changes in the structure of data, which happens 
with objects that have dynamic data structures. In such cases, not only the contents, 
but the structure of the data also changes. For this, the tester needs to analyze the 
data structure to find when and how it is changing and derive some scenarios from 
the analysis that are significant for the structure. These data scenarios are then used 
to test an object [TR92]. These scenarios basically provide more specific values 
of interest for some data member. They then increase the number of values to be 
considered in the domain of the data member when specifying the states for the 
objecL The construction of data scenarios is similar to the technique of special 
cases we disc!lssed earlier, ex ce pt that the special cases are being identified from 
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the point of view of the structure of the data. Consider the example of the class 
List, given next [TR92]. 

template <EltType> 
class List { 

private : 

} 

EltType listElem[ MAX_ELEMENTS ] ; 
// Repository to store elements 

int currentPtr 
// Points to the top element in the list 

public 
baal insertElement ( EltType element) ; 
EltType getElement( EltType element) ; 
baal isListEmpty() ; 

This is a generie class, that models a list of objects. We analyze the data structures 
to get some data scenarios that will help in the correct construction of the dala 
structures. For this class, we can say that the following scenarios are important for 
the correct construction of the list data structure: 

List is empty, Only one element in the list 
List is full, Partially filled list, 
curPtr=-1, curPtr=O, curPtr=MAX_ELEMENTS, 
curPtr between ° and MAX_ELEMENTS 

These can be used to form the extra entities in the domain of the partieular data 
elements (curPtr and listElement). The domains are then used to define the 
state space in whieh the object will be tested. 

Performing State Based Testing 

To perform state-based testing on a class, we first need to derive a dass under test 
from the class. This new class will be the dass with some additional features to 
examine the state of the object and to set the state of the object. Sometimes it is 
better to have aseparate method for setting the state of each instance variable, 
especially when the number of instance variables is higher, because most of the 
time testers will be testing varying values of one instance variable hence setting 
other variables each time will be redundant. The next step is to write a test driver, 
whieh will canstitute a main program to create the object, send messages to set the 
states as dietated by the test cases, send messages to invoke methods of the class 
under test, and then send messages to check the final state. While testing a method 
that sends messages to same untested objects, the tester needs to write stubs to 
focus on testing the method. Testing such a method involves more work, because 
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they tend to increase the test state space. The overall process of generating the test 
cases using this approach is [TR92]: 

1. For each data member of the dass under test, decide on the special values 
and general value groups to specify the domain values to be used for testing. 

2. Determine the data scenarios for the dass. 

3. Augment the domain using data scenarios. 

4. Add operations to set and test state values. 

5. For each operation, determine which of the states form valid inputs. These 
states are to be used for testing the operation. 

6. Start by testing operations at the bottom of the caU graph. Each operation is 
tested. 

7. For each state in which an operation is to be tested, determine all significant 
values that can be passed as parameters. The operation is tested with each of 
these parameters. 

Remarks 

State-based testing takes a different approach from black box testing or coverage
based testing. It does not replace these, but should be considered complimentary 
[TR92]. This testing approach seems to do weU when the operations interact heavily 
through the state of the object. If an object is a mere repository of information, it is 
not very effective, as the number of states under which testing done will be smaU. 

As a tester cannot set the state of the object before the constructor is invoked, this 
approach cannot be used to test a constructor. Similar is the case for destructors. 
A tester can set the state of the object before the destructor is invoked, but there is 
no way to test whether the destructor is working properly. 

State-based testing is greatly infiuenced by the number of data members the object 
has, because the cardinality of the state space of the object is directly dependent 
on that. As the number of data members increases, more effort might be needed in 
performing state-based testing on that object. Hence, the number of data members 
of a dass can be treated as a metric to measure the state-based testing effort that 
needs be put in [KJ96]. 

State-based testing has the tendency to detect only those eITors associated with the 
instance variables of the object and those associated with the signature variables 
(arguments to the methods plus return value) and ignore other eITors. So, if the 
object has no instance variables or has methods with zero signature variables or 
there are no eITors in the methods of the object that infiuence instance variables or 
signature variables, then this method will be of little use. Some recent experiments 
indicate that state-based testing is effective in detecting eITors that affect the state of 
the object or faults that lead to run-time eITors, but is not very effective in detecting 
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eITors involving local variables of methods and eITors in the logical conditions of 
the code [KJ96]. 

To decide which method to test first, an approach could be to build a call graph of 
methods, where each node represents a method, and an arc from node A to node B 
represents the fact that method B is called from method A. Once the graph is built, 
testing can commence from those features that fall at the bottom of graph. 

9.4.3 Incremental Testing for Subclasses 

Testing each class individually when the class is part of a class hierarchy can be 
wasteful as there might be an operation in a subclass that is the same as the base 
class and hence might not require any testing if the base class has been tested. In 
other words, when testing class hierarchies, it can be wasteful to test each class 
individually and separately. When a class inherits from a base class that has been 
tested, testing of this subclass requires testing only some features; for some features 
no testing might be needed. It will clearly reduce the testing effort if wh at features 
need to be tested can be clearly identified and for what features previous testing 
is sufficient. That is, just like a subclass inherits features from the base class, it 
should also inherit some test history of the base class, leading to reuse of testing 
effort. This form oftesting can be viewed as incremental testing, where the testing 
of a class is done incrementally, depending on the testing history of the base class. 

Here we discuss one approach for incremental testing of subclasses proposed in 
[HMF92]. There are two aspects to incremental testing. First is which features of a 
subclass need to be tested and which don't need to be tested. The second issue deals 
with reuse of test cases. That is, can the test case designed for a base class be reused 
to test some feature in the derived class. The aim of the second aspect is to reduce 
the effort required in selecting test cases; it does not reduce the other activities of 
testing (i.e., executing test cases or checking for presence of eITors). Reuse of test 
cases also requires documenting whether the test case was selected based on the 
specifications or on the code. Then, in some cases where the specifications stay the 
same and the implementation changes, the test cases based on specifications can 
be reused. Both of the issues have been discussed in [HMF92]. In our discussion 
here, we will focus mostlyon the first part, that is, deciding which features need 
to be tested and for which feature testing can be avoided. 

For incremental testing, we consider a subclass R to be defined as the base class 
P plus the modifier M. That is, the class under test, R, is formed by applying 
the modifier M to the base class P. We limit our attention to single inheritance. 
The features or attributes of a (sub)class under test are classified into following 
categories [HMF92]: 

• New. These features are specific only to the class under test and do not exist 
in the base ~lass. Note that a feature is different if either its name is different 
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or its parameters are different (i.e., a feature is different from another if its 
signature is different). 

• Virtual-new. These are the features speeifie to the dass under test that have 
their implementation dynamieally bound, that is, the feature is defined but 
its implementation is not eompletely defined to allow for redefinition by the 
subdasses of this dass. 

• Redefined. These are the features inherited from the base dass whose defini
tions are modified in the dass under test. That is, the signature is the same, 
but the implementation is different. 

• Virtual-redefined. These are the features inherited from the base dass whose 
implementation is dynamieally bound. 

• Recursive. These are the features inherited from the base dass of the class 
under test. That is, the definition and implementation of these are defined in 
the base dass. 

• Virtual-recursive. These are the features inherited from the base dass of the 
dass under test whose implementations are dynamieally bound. 

This classifieation of features will be used to determine whieh features need to 
be tested. For example, if the feature to be tested is new or virtual-new, we know 
that it is speeifie to the class under test and there is no information regarding this 
reeorded in the testing history ofthe base class. Henee, we have to test these features 
thoroughly. On the other hand, if a feature is of the type recursive, we know its 
definition and implementation is defined in the base class, henee we ean reuse the 
testing his tory of this feature. However, if this feature interaets with new features 
of the dass under test, then this interaetion has clearly not been tested in the base 
class and needs to be tested whiIe testing this class. 

This dearly shows that we have to separate individual testing of features and 
interaetion of features. As mentioned earlier, testing of features independently is 
not suffieient to claim that the class has been tested properly [PK90j. To test a class, 
besides testing the features independently, their interaetion needs to be tested. For 
a feature A of the class under test, we group the test eases with whieh the feature is 
tested into feature-test-set (FTS(A)) and integration-test-set (ITS(A)). FTS(A) is 
the set of test eases that test A independently, while ITS(A) is the set of test eases 
that test the interaetion of A with other features. Note that some features, whieh 
do not direetly interaet with other features, may have ITS as a null set. 

One way to identify what other features the feature under test is interaeting with is 
to build a graph, whose nodes represent features of the dass and an are from node 
A to node B indieates the usage of B in A's implementation. This graph will show 
interaetions between the features. Features that have ares going to other nodes are 
eandidates for integration testing. 

N ow let us consider the testing of the dass R that was formed from the base class P 
and the modifier M. We assurne that the base c1ass P has been tested, and for each 
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foreach feature A E M do 
case A is New or Virtual-new 

Generate FfS(A) 
Generate ITS(A) 
FfS(A) U ITS(A) is the set of test cases for testing A 

case A is Recursive or Virtual-recursive 
Generate ITS(A), if needed, for new interactions 
ITS(A) is the set of test cases for testing A 

case A is Redejined or Virtual-redejined 
Generate FfS(A) - the specifcation based test cases of 

FfS(A) in the test history of P can be reused 
Generate ITS(A) - again specification based test cases of 

ITS(A) in the test history of P can be reused 
FfS(A) U ITS(A) is the set of test cases for testing A 

FIGURE 9.7. Algorithm for incremental testing. 

feature of P, the test his tory gives the FfS and ITS. The algorithm in Figure 9.7 
describes the incremental testing for subclass R [HMF92]. 

As stated in the algorithm, if a feature is New (or Virtual-new), it has to be fully tested 
by selecting proper test cases for feature testing as weIl as integration testing. Here 
its integration with all other features need to be tested. If the feature is Recursive, 
it was defined, and therefore tested, in the base class. Hence, no feature testing 
needs to be done for this. However, if the feature is interacting with some new 
features, then test cases for testing these interactions need to be generated. Finally, 
if the feature is Redejined, both the feature and its interactions need to be tested. 
However, for both sets of test cases, from the testing history of the base class, the 
test cases of this feature that were derived from the specifications can be reused, 
because the specifications have not changed. 

This approach to testing reduces the testing effort by reducing what needs to be 
tested when testing a subclass and by reusing some of the test cases that were 
designed for testing the base class. The incremental approach clearly suggests that 
the testing should proceed in a top-down manner starting from the base classes 
in the inheritance hierarchy, so that the test history of these classes can be reused 
while testing derived classes. 

9.5 Testing Process 

The basic goal of the software development process is to produce software that 
has no errors or very few errors. In an effort to detect errors soon after they are 
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introduced, each phase ends with a verification activity such as a review. However, 
most of these verification activities in the early phases of software development are 
based on human evaluation and cannot detect all the errors. This unreliability of the 
quality assurance activities in the early part of the development cycle places a very 
high responsibility on testing. In other words, as testing is the last phase before the 
final software is delivered, it has the enormous responsibility of detecting any type 
of error that may be in the software. 

Furthermore, we know that software typically undergoes changes even after it has 
been delivered. And to validate that a change has not affected some old functionality 
of the system, regression testing is done. In regression testing, old test cases are 
executed with the expectation that the same old results will be produced. Need 
for regression testing places additional requirements on the testing phase; it must 
provide the "old" test cases and their outputs. 

In addition, as we have seen in the discussions in this chapter, testing has its own 
limitations. These limitations require that additional care be taken while performing 
testing. As testing is the costliest activity in software development, it is important 
that it be done efficiently. 

All these factors mean that testing cannot be done on-the-fty, as is often done 
by programmers. It has to be carefully planned and the plan has to be properly 
executed. The testing process focuses on how testing should proceed for a particular 
projecL Having discussed various methods of selecting test cases, we turn our 
attention to the testing process. But before we discuss the various aspects of the 
process, let us compare the different techniques for verification and validation. 

9.5.1 Comparison of Different Techniques 

After discussing various techniques for verification and validation in Chapters 7 
and 8, it is natural to ask how these techniques compare with each other. The major 
techniques we have covered in this chapter and Chapter 8 are: code reviews, static 
analysis, proof of correctness, structural testing, and functional testing. 

It is not easy to compare the effectiveness of the different techniques. By effec
tiveness, we mean the fault detecting capability. The effectiveness of a technique 
for testing a particular software will, in general, depend on the type of errors that 
exist in the software. Various studies have been done to evaluate or compare some 
techniques. Techniques to partition the input domain for testing purposes, as is 
generally done by any testing criterion, were evaluated against random testing, in 
which test cases are selected randomly, through simulation in [DN84]. The sim
ulation results seem to indicate that random testing may be quite cost effective. 
The work in [HT90] suggests that partition testing performs weIl only if the sub
domains with a high failure probability can be identified. This implies that faults 
are localized and the inputs that cause the faults to manifest themselves can be 
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guessed. Similar results were found in [WJ91], which also concluded that the ef
fectiveness of partition testing depends on how the inputs that cause failures to 
occur are distributed in the subdomains defined by the strategy for partitioning. 
Some studies reported in [Mat94] show that mutation testing can be quite effective 
in revealing errors. An experimental comparison of control flow-based testing and 
data flow-based testing reported in [FW93a] found that the all-uses criterion was 
more effective in some cases and branch-coverage was more effective in some 
others. 

Overall, it is safe to say that no one strategy does better than another strategy in 
all situations. And the exact situations in which one strategy performs better is 
also not wen understood yet; at least not to the level that it can be generalized 
for practitioners. However, based on the nature of the techniques, one can make 
some general observations about the effectiveness for different types of errors. For 
comparison, it is best to first classify the errors into different categaries and then 
compare the effectiveness ofthese techniques for the different categories. One such 
comparison is given in Figure 9.8 [Dun84]. 

As we can see, according to this comparison, different techniques have different 
strengths and weaknesses. For example, structural testing, as one would expect, is 
good for detecting logic errors, but not very good far detecting data handling errors. 
For data handling type errors, static analysis is quite good. Similarly, functional 
testing is good for input/output errors as it focuses on the extemal behavior, but it 
is not as good for detecting logic errors. As the figure shows, no one technique is 
good at detecting all types of errors, and hence no one technique can suffice for 
proper verification and validation. If high reliability is desired for the software, 
a combination of these techniques will have to be used. From the table, one can 
see that if code reviews, structural testing, and functional testing are all used, 
then together they have a high capability of detecting errors in all the categories 
described earlier. 

Technique 
Code Static Proof Structural Functional 

Defect Review Analysis Test Test 
Computational Med Med High High Med 
Logic Med Med High High Med 
110 High Med Low Med High 
Data handling High High Med Low High 
Interface High High low High Med 
Data Definition Med Med Med Low Med 
Database High Low Low Med Med 

FIGURE 9.8. Comparison of the different techniques. 
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It is c1ear from the comparison in Figure 9.8 and from the nature of functional and 
structural testing approaches, that the two basic approaches to testing are actually 
complimentary. One looks at one program from the outside, the other from the 
inside. Hence, for effective testing ofprograms, both techniques should be applied. 
It should also be noted that the two approaches are often suited for different kinds 
of testing. Structural testing is not suitable for testing entire programs, because it 
is extremely difficult to generate test cases to get the desired coverage. It is weil 
suited for module testing. So, structural testing is often done only for modules, and 
only functional testing is done for systems. 

If both structural and functional testing are to be used for testing some program, an 
approach to combine them could be to to start with selecting a set of test cases using 
the functional criteria. In general, these test cases will provide some coverage but 
will not completely satisfy the chosen coverage criterion. This set of test cases is 
then augmented with additional test cases so that the coverage criterion is satisfied. 
This final set of test cases can then be used for testing. 

Another way of measuring effectiveness is to consider the "cost effectiveness" 
of different strategies, that is, the cost of detecting an error by using a particular 
strategy. And the cost inc1udes all the effort required to plan, test, and evaluate. In 
cost effectiveness, static analysis fares the best, as without any human effort it can 
detect anomalies that have a high probability of containing errors. Hence, if static 
analysis tools are available, they should be used first for detecting errors. However, 
static analysis can detect only a very few types of errors. 

Next in cost effectiveness is code reviews. As we know, in code reviews, the code 
is reviewed by a team of people in a formal manner. The group synergy is used to 
find faults in the code. In code reviews the faults are found directly, unlike in testing 
where only the failure is detected and the fault has to be found through debugging. 
Furthermore, no test case planning, test case generation, or test case execution is 
needed. In place of these, reviews require effort by a group of reviewers reviewing 
the code. Much of the experience now indicates that code reviews are an extremely 
cost-effective means of detecting errors. That is, cost in terms of human time per 
defect detected is quite low in code reviews. Testing may be the least cost-effective 
method of detecting errors. 

9.5.2 Levels of Testing 

Now let us turn our attention to the testing process. We have seen that faults can 
occur during any phase in the software development cyc1e. Verification is performed 
on the output of each phase, but so me faults are likely to remain undetected by 
these metbods. These faults will be eventually reftected in the code. Testing is 
usually relied on to detect these faults, in addition to the faults introduced during 
the co ding phase itself. Due to this, different levels of testing are used in the testing 
process; each level of testing aims to test different aspects of the system. 
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FIGURE 9.9. Levels of testing. 

The basic levels are unit testing, integration testing, and system and acceptance 
testing. These different levels of testing attempt to detect different types of faults. 
The relation of the faults introduced in different phases, and the different levels of 
testing are shown in Figure 9.9. 

The first level of testing is called unit testing. In this, different modules are tested 
against the specifications produced during design for the modules. Unit testing 
is essentially for verification of the code produced during the coding phase, and 
hence the goal is to test the internal logic of the modules. It is typically done by 
the programmer of the module. A module is considered for integration and use by 
others only after it has been unit tested satisfactorily. Due to its dose association 
with coding, the coding phase is frequently called "coding and unit testing." As 
the focus of thi s testing level is on testing the code, structural testing is best suited 
for this level. In fact, as structural testing is not very suitable for large programs, it 
is used mostly at the unit testing level. 

The next level of testing is often called integration testing. In this, many unit tested 
modules are combined into subsystems, which are then tested. The goal here is to 
see if the modules can be integrated properly. Hence, the emphasis is on testing 
interfaces between modules. This testing activity can be considered testing the 
design. 

The next levels are system testing and acceptance testing. Here the entire soft
ware system is tested. The reference document for this process is the requirements 
document, and the goal is to see if the software meets its requirements. This is 
essentially a validation exercise, and in many situations it is the only validation ac
tivity. Acceptance testing is sometimes performed with realistic data of the dient 
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to demonstrate that the software is working satisfactorily. Testing here focuses 
on the external behavior of the system; the internal logic of the program is not 
emphasized. Consequently, mostly functional testing is performed at these levels. 

These levels of testing are performect when a system is being built from the co m
ponents that have been coded. There is another level of testing, called regression 
testing, that is performed when some changes are made to an existing system. 
We know that changes are fundamental to software; any software must undergo 
changes. Frequently, a change is made to "upgrade" the software by adding new 
features and functionality. Clearly, the modified software needs to be tested to make 
sure that the new features to be added do indeed work. However, as modifications 
have been made to an existing system, testing also has to done to make sure that the 
modification has not had any undesired side effect of making some of the earlier 
services faulty. That is, besides ensuring the desired behavior of the new services, 
testing has to ensure that the desired behavior of the old services is maintained. 
This is the task of regression testing. 

For regression testing, some test cases that have been executed on the old system 
are maintained, along with the output produced by the old system. These test cases 
are executed again on the modified system and its output compared with the earlier 
output to make sure that the system is working as before on these test cases. This 
frequently is a major task when modifications are to be made to existing systems. 

A consequence of this is that the test cases for systems should be properly docu
mented for future use. Often, when we test our programs, the test cases are treated 
as "throw away" cases; after testing is complete, test cases and their outcomes are 
thrown away. With this practice, every time regression testing has to be done, the 
set of test cases will have to be re-created, resulting in increased cost. In fact, for 
many systems that are frequently changed, regression testing "scripts" are used 
to automatically perform the regression testing after some changes. A regression 
testing script contains all the inputs given by the test cases and the outputs produced 
by the system for these test cases. These scripts are typically produced during sys
tem testing, as regression testing is generally done only for complete systems or 
subsystems. When the system is modified, the scripts are executed again, giving 
the inputs specified in the scripts and comparing the outputs with the outputs given 
in the scripts. Given the scripts, through the use of tools, regression testing can be 
largely automated. 

9.5.3 Test Plan 

In general, testing commences with a test plan :lüd terminates with acceptance 
testing. A test plan is a general document for the entire project that defines the 
scope, approach to be taken, and the schedule of testing as weIl as identifies the test 
items for the entire testing process and the personnel responsible for the different 
activities of ~esting. The test planning can be done well before the actual testing 
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commences and can be done in parallel with the co ding and design phases. The 
inputs for forming the test plan are: (1) project plan, (2) requirements document, 
and (3) system design document. The project plan is needed to make sure that 
the test plan is consistent with the overall plan for the project and the testing 
schedule matches that of the project plan. The requirements document and the 
design document are the basic documents used for selecting the test units and 
deciding the approaches to be used during testing. A test plan should contain the 
following: 

• Test unit specification. 

• Features to be tested. 

• Approach for testing. 

• Test deliverables. 

• Schedule. 

• Personnel allocation. 

One of the most important activities of the test plan is to identify the test units. 
A test unit is a set of one or more modules, together with associated data, that 
are from a single computer program and that are the object of testing [IEE87]. A 
test unit can occur at any level and can contain from a single module to the entire 
system. Thus, a test unit may be a module, a few modules, or a complete system. 

As seen earlier, different levels oftesting have to be used during the testing activity. 
The levels are specified in the test plan by identifying the test units for the project. 
Different units are usually specified for unit, integration, and system testing. The 
identification of test units establishes the different levels of testing that will be 
performed in the project. Generally, a number of test units are formed during the 
testing, starting from the lower-level modules, which have to be unit tested. That is, 
first the modules that have to be tested individually are specified as test units. Then 
the higher-Ievel units are specified, which may be a combination of already tested 
units or may combine some already tested units with some untested modules. The 
basic idea behind forming test units is to make sure that testing is being performed 
incrementally, with each increment including only a few aspects that need to be 
tested. 

An important factor while forming a unit is the "testability" of a unit. A unit should 
be such that it earl be easily tested. In other words, it should be possible to form 
meaningful test cases and execute the unit without much effort with these test cases. 
For example, a module that manipulates the complex data structure formed from 
a file input by an input module might not be a suitable unit from the point of view 
of testability, as forming meaningful test cases for the unit will be hard, and driver 
routines will have to be written to convert inputs from files or terminals that are 
given by the tester into data structures suitable for the module. In this case, it might 
be better to form the unit by including the input module as weIl. Then the file input 
expected by the input module can contain the test cases. 
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Features to be tested inc1ude all software features and combinations of features 
that should be tested. A software feature is a software characteristic specified or 
implied by the requirements or design documents. These may inc1ude functionality, 
performance, design constraints, and attributes. 

The approach for testing specifies the overall approach to be followed in the current 
project. The techniques that will be used to judge the testing effort should also 
be specified. This is sometimes called the testing criterion or the criterion for 
evaluating the set of test cases used in testing. In the previous sections we discussed 
many criteria for evaluating and selecting test cases. 

Testing deliverables should be specified in the test plan before the actual testing 
begins. Deliverables could be a list of test cases that were used, detailed results 
of testing, test summary report, test log, and data about the code coverage. In 
general, a test case specification report, test summary report, and a test log should 
always be specified as deliverables. Test case specification is discussed later. The 
test summary report summarizes the results of the testing activities and evaluates 
the results. It defines the items tested, the environment in which testing was done, 
and any variations from the specifications observed during testing. The test log 
provides a chronological record of relevant details about the execution of the test 
cases. 

The schedule specifies the amount of time and effort to be spent on different activ
ities of testing, and testing of different units that have been identified. Personnel 
allocation identifies the persons responsible for performing the different activities. 

9.5.4 Test Case Specifications 

The test plan focuses on how the testing for the project will proceed, which units 
will be tested, and what approaches (and tools) are to be used during the various 
stages of testing. However, it does not deal with the details of testing a unit, nor 
does it specify which test cases are to be used. 

Test case specification has to be done separately for each unit. Based on the ap
proach specified in the test plan, first the features to be tested for this unit must 
be determined. The overall approach stated in the plan is refined into specific test 
techniques that should be followed and into the criteria to be used for evaluation. 
Based on these, the test cases are specified for testing the unit. Test case specifi
cation gives, for each unit to be tested, all test cases, inputs to be used in the test 
cases, conditions being tested by the test case, and outputs expected for those test 
cases. 

Test case specification is a major activity in the testing process. Careful selection 
of test cases that satisfy the criterion and approach specified is essential for proper 
testing. We have considered many methods of generating test cases and criteria for 
evaluating te~t cases. A combination of these can be used to select the test cases. It 
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should be pointed out that test case specifications contain not only the test cases, 
but also the rationale of selecting each test case (such as what condition it is testing) 
and the expected output for the test case. 

There are two basic reasons test caseS are specified before they are used for testing.1t 
is known that testing has severe limitations and the effectiveness oftesting depends 
very heavily on the exact nature ofthe test cases. Even for a given criterion, the exact 
nature of the test cases affects the effectiveness of testing. Constructing "good" test 
cases that will reveal errors in programs is still a very creative activity that depends 
a great deal on the ingenuity of the tester. Clearly, it is important to ensure that the 
set of test cases used is of "high quality." 

As with many other verification methods, evaluation of quality of test cases is 
done through "test case review." And for any review, a formal document or work 
product is needed. This is the primary reason for having the test case specification 
in the form of a document. The test case specification document is reviewed, using 
a formal review process, to make sure that the test cases are consistent with the 
policy specified in the plan, satisfy the chosen criterion, and in general cover the 
various aspects of the unit to be tested. For this purpose, the reason for selecting 
the test case and the expected output are also given in the test case specification 
document. By looking at the conditions being tested by the test cases, the reviewers 
can check if all the important conditions are being tested. As conditions can also 
be based on the output, by considering the expected outputs of the test cases, it can 
also be determined if the production of all the different types of outputs the unit is 
supposed to produce are being tested. Another reason for specifying the expected 
outputs is to use it as the "oracle" when the test case is executed. 

Besides reviewing, another reason for formally specifying the test cases in a doc
ument is that the process of sitting down and specifying all the test cases that will 
be used for testing helps the tester in selecting a good set of test cases. By doing 
this, the tester can see the testing of the unit in totality and the effect of the total 
set of test cases. This type of evaluation is hard to do in on-the-fty testing where 
test cases are determined as testing proceeds. 

Another reason for formal test case specifications is that the specifications can be 
used as "scripts" during regression testing, particularly if regression testing is to be 
performed manually. Generally, the test case specification document itself is used 
to record the results of testing. That is, a column is created when test cases are 
specified that is left blank. When the test cases are executed, the resuIts of the test 
cases are recorded in this column. Hence, the specification document eventually 
also be comes arecord of the testing results. 

9.5.5 Test Case Execution and Analysis 

With the specification of test cases, the next step in the testing process is to execute 
them. This step is also not straightforward. The test case specifications only specify 
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the set of test cases for the unit to be tested. However, executing the test cases may 
require construction of driver modules or stubs. It mayaiso require modules to set 
up the environment as stated in the test plan and test case specifications. If data 
is to be collected, then data coIlection forms need to be set up or data collection 
software developed. Only after all these are ready can the test cases be executed. 
Sometimes, the steps to be performed to execute the test cases are specified in a 
separate document called the test procedure specification. This document specifies 
any special requirements that exist for setting the test environment and describes the 
methods and formats for reporting the results of testing. Measurements, if needed, 
are also specified, along with how to obtain them. 

Various outputs are produced as a result of test case execution for the unit under test. 
These outputs are needed to evaluate if the testing has been satisfactory. The most 
common outputs are the test log, the test summary report, and the errar report. 
The test log describes the details of the testing. As mentioned earlier, the test 
case specification document itself can act as the document for logging the details 
of testing. The test summary report is meant for project management, where the 
summary of the entire test case execution is provided. The summary gives the 
total number of test cases executed, the number and nature of errors found, and 
a summary of any metrics data (e.g., effort) coIlected. The error report gives the 
summary of aIl the errors found. The errors rnight also be categorized into different 
levels, if such a categorization is available and its use has been planned in the test 
plan. This information can also be obtained from the test log, but it is usually given 
as aseparate document. This report is frequently used to track the status of defects 
found during testing. 

After testing is complete, the efficiency of the various defect removal techniques 
can be studied. The efficiency of a defect removal process can be defined if the 
total number of errors in the software is known. This data is not known but can be 
approximated more accurately after all the defects found in testing are known. The 
defect removal efficiency of a defect removing process is defined as the percentage 
reduction ofthe defects that are present before the initiation ofthe process [Jon78]. 
The cumulative defect removal efficiency of aseries of defect removal processes 
is the percentage of defects that have been removed by this series, based on the 
number of defects present at the beginning of the series. 

For example, suppose a total of 10 defects are detected during development and 
field operation. We can estimate the total number of errors in the software before 
the defect removal operations began as 10. Suppose that during reviews four defects 
were removed. The defect removal efficiency of reviews in this example is 40%. 
Suppose that during testing another four defects are removed. The defect removal 
efficiency of testing then is 66% (as it removed four out of the six remaining 
defects). The cumulative defect removal efficiency of reviews followed by testing 
is 80%. Defect removal efficiencies of the different methods is useful for evaluating 
the quality assurance process being used. It can also be used to evaluate how weIl 
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the activities are performed in a given project, if process data from previous projects 
is available. 

Testing and coding are the two phases that require careful monitoring, as these 
phases involve the maximum number of people. A few parameters can be observed 
for monitoring the testing process. Testing effort is the total effort spent by the 
project team in testing activities; and is an excellent indicator of whether or not 
testing is sufficient. In particular, if inadequate testing is done, it will be reflected 
in a reduced testing effort. From past experience we know that the total testing 
effort should be about 40% of the total effort for developing the software (the 
exact percentage will depend on the process and will have to be determined for 
the process). From this, the estimate of the effort required for testing, compared 
to coding or design, can be computed and used for monitoring. Such monitoring 
can catch the "miracle finish" cases, where the project "finishes" suddenly, soon 
after the coding is done. Such "finishes" occur for reasons such as unreasonable 
schedules, personnel shortages, and slippage of schedule. Such a finish usually 
implies that to finish the project the testing phase has been compressed too much, 
which is likely to mean that the software has not been evaluated properly. 

Computer time consumed during testing is another measure that can give valuable 
information to project management. In general, in a software development project, 
the computer time consumption is low at the start, increases as time progresses, 
and reaches a peak. Thereafter it is reduced, as the project reaches its completion. 
Maximum computer time is consumed during the latter part of coding and testing. 
By monitoring the computer time consumed, one can get an idea about how thor
ough the testing has been. Again, by comparing the previous buildups in computer 
time consumption, computer time consumption of the current project can provide 
valuable information about whether or not the testing is adequate. 

Error tracing is an activity that does not directly affect the testing of the current 
project, but it has many long-term quality control benefits. By error tracing we mean 
that when a fault is detected after testing, it should be studied and traced back in the 
development cycle to determine where it was introduced. This exercise has many 
benefits. First, it gives quantitative data about how many errors slip by the earlier 
quality control measures and which phases are more error-prone. If some particular 
phase is found to be more error prone, the verification activity of that phase should 
be strengthened in the future and proper standards and procedures need to be 
developed to reduce the occurrence of errors in the future. The volume and nature of 
faults slipping by the earlier quality assurance measures provide valuable input for 
evaluation of the quality control strategies. This evaluation can be used to determine 
which quality control measures should be strengthened and what sort of techniques 
should be added. Another benefit of error tracing is productivity improvement in 
the future. EiTor tracing is a feedback mechanism that is invaluable for learning. A 
designer or programmer, by seeing the mistakes that occurred during his activities, 
willlearn from the information and is less likely to make similar mi stakes in the 
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future, thereby increasing his productivity. If this feedback is not provided, such 
learning will not take place. 

9.6 Metrics-Reliability Estimation 

After the testing is done and the software is delivered, the development is considered 
over. It will c1early be very desirable to know, in quantifiable terms, the reliability 
of the software being delivered. As testing directly impacts the reliability and most 
reliability models use data obtained during testing to predict reliability, reliability 
estimation is the main product metrics of interest at the end of the testing phase. 
We will focus our attention on this metric in this section. 

Though reliability is the main product metric for the testing activity, there are other 
metrics of interest that can be evaluated after testing. Most of these are process 
metrics that do not directly relate to testing and are evaluated at the end of testing 
only because the end of testing signifies the end of the project. In other words, the 
termination analysis of the project management phase (refer to Chapter 2) is done 
typically at the end of testing, and some process metrics are used for this. Before 
we discuss the reliability modeling and estimation, let us briefly discuss a few main 
metrics that can be used for process evaluation at the end of the project. 

Once the project is finished, one can look at the overall productivity achieved 
by the programmers during the project. Productivity data can be used to manage 
the resources and reduce cost by increasing productivity in the future. One com
mon method for measuring productivity is fines of code or function points per 
programmer-month. This measure can be obtained easily from the data about the 
total programmer-months spent on the project and the size of the project (in LOC 
or function points). The use of this metric requires a precise definition of size. It 
should be kept in mind that productivity by this measure depends considerably on 
the source language (when LOC is used as size), and so data across languages may 
not be comparable. This productivity measure cannot handle reuse of code prop
erly. Some other problems that must be handled properly while using this metric 
are discussed in [Jon78]. 

Another processmetric of interest is defect removal efficiency, which was discussed 
earlier in the chapter. Another metric that is frequently used is defects per thousand 
fines of code or defects per function point. This is, in asense, a rough measure of 
the "reliability" of the software as the defect density directly impacts the reliability 
of the software. It is also related to some of the software reliability models. We 
will discuss this metric more after we have discussed reliability modeling. 

Let us now return to our main topic-software reliability modeling and assess
ment. Reliability of software often depends considerably on the quality of testing. 
Hence, by as~essing reliability we can also judge the quality of testing. Alterna-
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tively, reliability estimation can be used to decide whether enough testing has been 
done. Hence, besides characterizing an important quality property of the product 
being delivered, reliability estimation has a direct role in project management-the 
reliability models being used by the project manager to decide when to stop testing. 

Many models have been proposed for software reliability assessment. Some of the 
commonly referred models are the Jelinski and Moranda model [JM72], the Goel 
and Okomuto model [G079], Musa's models [Mus75, M084, MI087], and the 
Littelwood and Verall model [LV74]. Most of these models differ in what they 
take as the random variable for modeling and the distributions they consider for 
the random variable. They also make different assumptions about the software and 
the underlying testing process. A discussion of the assumptions and consequent 
limitations on the models is given in [Goe85]. A survey of many of the different 
models is given in [Goe85, MI087]. Here we will primarily discuss Musa's basic 
model, as it is one of the simplest models and one of the ones that has been most 
widely used. The discussion of the model is based largely on the book [MI087]. 

9.6.1 Basic Concepts and Definitions 

Reliability of a product specifies the probability of failure-free operation of that 
product for a given time duration. As we discussed earlier in this chapter, unreli
ability of any product comes due to failures or presence of faults in the system. 
As software does not "wear out" or "age" as a mechanical or an electronic system 
does, the unreliability of software is primarily due to bugs or design faults in the 
software. It is widely believed that with the current level of technology it is im
possible to detect and remove all the faults in a large software system (particularly 
before delivery). Consequently, a software system is expected to have some faults 
in it. 

Reliability is a probabilistic measure that assurnes that the occurrence of failure 
of software is a random phenomenon. That is, if we define the life of a software 
system as a variable, this is a random variable that may assurne different values in 
different invocations of the software. This randomness of the failure occurrences 
is necessary for reliability modeling. Here, by randomness all that is meant is that 
the failure cannot be predicted accurately. This assumption will generally hold 
for larger systems, but may not hold for small pro grams that have bugs (in which 
case one might be able to predict the failures). Hence, reliability modeling is more 
meaningful for larger systems (In [MI087] it is suggested that it should be applied 
to systems larger than 5000 LOC, as such systems will provide enough data points 
to do statistical analysis.) 

Let X be the random variable that represents the life of a system. The fai/ure 
probability, F(t), of a system is defined as the probability that the system will fail 
by time t, that is, the life of the system, X, is less than t: 

F(t) = P(X ~ t). 
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As F(t) specifies the failure probability up to a given time t, which changes with 
time, one can specify functions for F(t). Such a function is called the Jailure 
distribution function. Each of these functions must have a value of 0 at time t = 0 
(a system cannot fail before time 0) and a value I at time t = CXl (all systems must 
fail before infinity). Reliability of a system is the probability that the system has 
not failed by time t. In other words, 

R(t) = 1 - F(t). 

If F (I) is differentiable, its first derivative J (t) is called the Jailure density function. 
The failure density tunction represents the instantaneous failure prob ability at time 
t. Or, the prob ability that a failure will occur between times t and (t + f':lt) is given 
by J(t)f':lt. 

These definitions give the failure probability, and reliability, failure density as a 
function of time at the initial time. That is, at time t = 0 we are predicting that the 
probability that the system will fail by some time t is F(t). What if we find that 
by time t the system has not failed (after all F(t) is only a probability)? That is, 
as time passes, we may find that a system has not failed by some time t. In that 
case, at time t, we would like to know the future failure probabilities from that 
time onward. In other words, we would like to know the failure prob ability for a 
system, given that the system has not failed by time t. This is generally specified 
for a system by its hazard rate, z(t), which is the conditional failure density at time 
t, given that no failure has occurred between 0 and t. By this definition, the hazard 
rate is 

(t) = J(t). 
z R(t) 

The relationship between the hazard rate and reliability is [Tri82, MI087] (exp[x] 
represents eX ): 

R(t) = exp [11 
Z(X)dX] . 

The reliability ofa system can also be specified as the mean time toJailure (MTTF). 
MTTF represents the expected lifetime of the system. From the reliability function, 
it can be obtained as [Tri82, MI087]: 

MTT F = 1"0 R(x)dx. 

Note that one can obtain the MTTF from the reliability function but the reverse is 
not always true. The reliability function can, however, be obtained from the MTTF 
if the failure process is assumed to be Poisson, that is, F(t) has an exponential 
distribution. Exponential distribution is given by F(t) = 1 - e-),·I, where ).., is the 
failure rate and is equal to inverse of MTTF. 

The classical definition of reliability was given earlier. However, there are other 
ways reliability can be specified. In the preceding definitions, the random variable 
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was the time to next failure or the life of the system. We can define a different 
random variable, which represents the number offailures experienced by the system 
by time t. Clearly, this number will also be random as failures are random. If we use 
the random variable representing the number of failures by time t, we can specify 
reliability in a different form. If M(t) represents the distribution of the number 
of failures experienced by time t, then the mean value function J1,(t) for this is 
[MI087]: 

J1,(t) = E[M(t)], 

where E is the expectation function and J1,(t) represents the expected number of 
failures that will be experienced by time t. The function J1,(t) will have a value of 
o at time t = 0 and will be a non-decreasing function. Thefailure intensity A(t) of 
the system is defined as [MI087] 

A(t) = dJ1,(t). 
dt 

The failure intensity specifies the instantaneous change in the expected number of 
failures, or the expected number of failures per unit time. The number of failures 
that will occur between t and t + !1t can be approximated as A(t)!1t . For Poisson
type models (in which the failure probability has an exponential distribution), the 
probability of more than one event occurring in a small interval !1t is considered 
O. Hence, A!1t represents the probability that a failure will occur between t and 
Ct + !1t), which is the same as the prob ability that the system does not fail until 
time t and there is a failure within !1t after that. In other words, for these types of 
models, the hazard rate is the same as the failure intensity function. 

Having given the definitions, let us come back to some terms that are used in these 
definitions. In particular, it is very important to understand the notion of time and 
what is meant by failure and fault in the context of reliability models. 

First let us dearly define what is meant by time in these reliability models. There 
are three common definitions of time for software reliability models [MI087]: 
execution time, calendar time, and dock time. Execution time is the actual CPD 
time the software takes during its execution. Calendar time is the regular time 
we use, and dock time is the actual dock time that elapses while the software is 
executing (i.e., it includes the time the software waits in the system). Different 
models have used different time definitions, though the most commonly used are 
execution time and calendar time. It is now believed that execution time models 
are better and more accurate than calendar time models, as they more accurately 
capture the "stress" on the software due to execution. 

Now let us revisit "failure" of software. In software, what is called a "failure" is 
dependent on the project, and its exact definition is left to the tester or project 
manager. Für example, is a misplaced line in the output a failure or not? Clearly, 
it depends on the project; some will consider it a failure and others will not. Take 
another example. If the output is not produced within a given time period, is it 
a failure or not? For a real-time system this may be viewed as a failure, but for 
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an operating system it may not be viewed as a failure. This means that there can 
be no general definition of failure, and it is up to the project manager or end user 
to decide what will be considered a failure for reliability purposes. Note that in 
the example of a misplaced line, a defect might be recorded, and even corrected 
later, but its occurrence might not be considered a failure. The faiIure behavior of 
software is primarily controlled by two factors [MI087]: 

1. Tbe number of faults in the software being evaluated. 

2. The operational profile of the execution. 

Clearly, with a higher number of faults in software, one will expect the software 
to have a lower reliability. That is, the higher the number of faults, the higher the 
probability that the system will fail within time t. Due to this, the total number of 
defects in the software can be considered a rough guide of its reliability. This is 
why defects or faults per KLOC is a very commonly used metric for quantifying 
quality. Such ametrie may be used to compare processes or products but cannot be 
effectively used to quantify reliability. As such ametrie does not require reliability 
modeling, which requires a fair amount of data collection and sophistication, this 
metric is widely used in practice, despite its limitations. As we will see soon, 
the reliability models can be used to estimate the faults per KLOC metric more 
accurately. 

The failure of software also depends critically on the environment in which it is 
executing. It is weIl known that software frequently fails only if some types of 
inputs are given. In other words, if software has faults, only some types of input 
will exercise that fault to affect failures. Hence, how often these inputs cause 
failures during execution will decide how often the software fails. The operational 
profile of software captures the relative probability of different types of inputs 
being given to the software during its execution. As the definition of reliability is 
based on failures, which in turn depends on the nature of inputs, reliability is clearly 
dependent on the operational profile of the software. Hence, when we say that the 
reliability of software is R(t), it assumes that this is for some operational profile. If 
the operational profile changes dramatically, then we will need to either recompute 
R(t) or recalibrate it. In other words, if we want to measure the reliability of a 
software system, we must observe the failures of the software in the operational 
profile in which it is eventually going to execute. Generally it is assumed that the 
profile of inputs given during system testing is similar to the inputs the software will 
experience during operation (i.e., the test cases during system testing are consistent 
with the operational profile of the software). Hence, the data of system testing is 
used to model the reliability of the software. 

9.6.2 Musa's Basic Model 

Let us now discuss one particular model-Musa's basic execution time model. The 
description given here of the model is based on [MI087]. This is an execution time 



www.manaraa.com

458 9. Testing 

model, that is, the time taken during modeling is the actual CPD execution time of 
the software being modeled. The model is simple to understand and apply, and its 
predictive value has been generally found to be good. 

The model focuses on failure intensity while modeling reliability. It assumes that 
the failure intensity decreases with time, that is, as (execution) time increases, the 
failure intensity decreases. This assumption is generally true as the following is 
assumed about the software testing activity, during which data is being collected: 
during testing, if a failure is observed, the fault that caused that failure is detected 
and the fault is removed. Even if a specific fault removal action might be unsuc
cessful, overall, failures lead to a reduction offaults in the software. Consequently, 
the failure intensity decreases. Most other models make similar assumption, which 
is consistent with actual observations. 

In the basic model, it is assumed that each failure causes the same amount of 
decrement in the failure intensity. That is, the failure intensity decreases with 
a constant rate with the number of failures. In the more sophisticated Musa's 
logarithmic model [M084, MI087], the reduction is not assumed to be linear but 
logarithmic (this is the basic difference between the basic and logarithmic model). 
For the basic model, the failure intensity (number of failures per unit time) as a 
function of the number of failures is given as 

A(tt) = AO (1 - :), 
where AO is the initial failure intensity at the start of execution (i.e., at time t = 0), 
tt is the expected number of failures by the given time t, and Vo is the total number 
of failures that would occur in infinite time. The total number of failures in infinite 
time is finite as it is assumed that on each failure, the fault in the software is 
removed. As the total number of faults in a given software whose reliability is 
being modeled is finite, this implies that the number of failures is finite. The failure 
intensity, as a function of the total number of failures experienced, is shown in 
Figure 9.10 [MI087]. 

The linear decrease in failure intensity as the number of failures observed increases 
is an assumption that is likely to hold for software for which the operational profile 
is uniform. That is, for software where the operational profile is such that any 
valid input is more or less equally likely, the assumption that the failure intensity 
decreases linearly generally holds. The intuitive rationale is that if the operational 
profile is uniform, any failure can occur at any time and all failures will have the 
same impact in failure intensity reduction. If the operational profile is not uniform, 
the failure intensity curves are ones whose slope decreases with the number of 
failures (i.e., each additional failure contributes less to the reduction in failure 
intensity). In such a situation the logarithmic model is better suited. 

Note that the failure intensity decreases due to the nature of the software de
velopment process, in particular system testing, the activity in which reliability 
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FIGURE 9.10. Failure intensity function. 

modeling is applied. Specifically, during testing when a failure is detected, the 
fault that caused the failure is identified and removed. It is removal of the fault that 
reduces the failure intensity. However, if the faults are not removed, as would be 
the situation if the software was already deployed in the field (when the failures 
are logged or reported but the faults are not removed), then the failure intensity 
would stay constant. In this situation, the value of A would stay the same as at 
the last failure that resulted in fault removal, and the reliability will be given by 
R(t) = e-h , where r is the execution time. 

Earlier, the failure intensity was given as a function of mean number of failures 
experienced by the software. The expected number of failures as a function of 
execution time r (i.e expected number of failures by time r), j.l(r), in the basic 
model is assumed to have an exponential distribution. That is, 

j.l(r) = vo(l - e-AO/VOH). 

By substituting this value in the equation for A given earlier, we get the failure 
intensity as a function of time: 

A(r) = AO * e-AO/vo*r. 

A typical shape of the failure intensity as it varies with time is shown in Figure 9.11 
[MI087]. 

This reliability model has two parameters whose values are needed to predict the 
reliability of given software. These are the initial failure intensity AO and the total 
number offailures vo. Unless the value of these are known, the model cannot be 
applied to predict the reliability of software. Most software reliability models are 
like this; they frequently will have a few parameters whose values are needed to 
apply the model. 
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FIGURE 9.11. Failure intensity with time. 

It would be very convenient if these parameters had constant values for all software 
systems or if they varied in a manner that their values for a particular software 
can be determined easily based on some cIearly identified and easily obtained 
characteristic of the software (e.g., size or complexity). Some speculations have 
been made regarding how these parameters may depend on software characteristics. 
However, no such simple method is currently available that is dependable. The 
method that is currently used for all software reliability models is to estimate the 
value of these parameters for the particular software being modeled through the 
failure data for that software itself. In other words, the failure data of the software 
being modeled is used to obtain the value of these parameters. Some statistical 
methods are used for this, which we will discuss shortly. 

The consequence of this fact is that, in general, for reliability modeling, the behavior 
of the software system is carefully observed during system testing and data of 
failures observed during testing is collected up to some time r. Then statistical 
methods are applied to this collected data to obtain the value of these parameters. 
Once the values of the parameters are known, the reliability (in terms of failure 
intensity) of the software can be predicted. As statistical methods require that 
"enough" data points be available before accurate estimation ofthe parameters can 
be done, this implies that reliability can be estimated only after sufficient data has 
been collected. The requirement that there be a reasonably large failure data set 
before the parameters can be estimated is another reason reliability models cannot 
effectively be applied to software that is small in size (as it will not provide enough 
failure data points). Another consequence of this approach is that we can never 
determine the values of the parameters precisely. They will only be estimates, and 
there ',vill always be some uncertainty with the values we compute. This uncertainty 
results in corresponding uncertainty in the reliability estimates computed using the 
models. 
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Let us assurne that the failure data collection begins with system testing (as is 
usually the case). That is, time r = 0 is taken to be the commencement of system 
testing. The selection of the start of time is somewhat arbitrary. However, selecting 
the start of time where the assumptions about randomness and operation al profile 
may not hold will cause the model to give incorrect estimates. This is why data of 
unit testing or integration testing, where the whole system is not being tested, is 
not considered. System testing, in which the entire system is being tested, is really 
the earliest point from where the data can be collected. 

This reliability model can be applied to compute some other values of interest that 
can help decide if enough testing has been done or how much more testing needs 
to be done to achieve a target reliability. Suppose the target reliability is specified 
in terms of desired failure intensity, A F. If we have computed the two parameters, 
then at a given time, by the time a given number of failures have been experienced, 
the failure intensity is known. Let the present failure intensity be Ap. Then the 
number of failures that we can expect to observe before the software achieves the 
desired reliability can be computed by computing AF - AP, which gives, 

Vo 
ßJL = -(Ap - AF). 

AO 

In other words, we can now clearly say that at any given time, we need to know 
how many more failures we need to observe (and correct) before the software will 
achieve the target reliability. Similarly, we can compute the additional time that 
needs to be spent before the target reliability is achieved. This is given by 

Vo Ap 
ßt=-ln-. 

AO AF 

That is, we can expect that the software needs to be executed for ßt more time 
before we will observe enough failures (and remove the faults corresponding to 
them) to reach the target reliability. This time can be converted to calendar time, 
which is what is used in projects, by incorporating so me parameters about the 
software development environment. This issue will be discussed later. 

9.6.3 Failure Data and Parameter Estimation 

To apply the reliability model for a particular software, we need to obtain the 
value of the two parameters: AO and vo. These parameters are not the same for all 
software and have to be estimated for the software being modeled. Some efforts 
have been made to get an initial prediction of these values, which can later be 
replaced by more accurate estimated values, based on values for similar projects and 
process characteristics [MI087]. Here we will discuss only the statistical estimation 
methods, which give more accurate values for these parameters. 

For statistical approaches to parameter estimation, data has to be collected about 
the failures of the software being modeled. Generally, as mentioned earlier, the 
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earliest point to start collecting data for reliability estimation is the start of system 
testing (a later point can also be taken, though it will reduce the number of failures 
that can be observed). The data can be collected in two different forms. The first 
form is to record the failure times (in execution time) of the failures observed 
during execution. This data will essentially be a sequence of (execution) times 
representing the first, second, and so on failures that are observed. The second 
form of data is to record the number of failures observed during execution in 
different time intervals (called groupedjailure data). This form might sometimes 
be easier to collect if the unit is a clearly identified unit, like a day. In this form, the 
data will be in the form of a table, where the duration of the interval (in execution 
time) and the number of failures observed during that interval are given. We will 
only discuss the parameter estimation with the first form. For further details on 
parameter estimation, the reader is referred to [MI087]. 

There are many ways in which the model can be "fitted" to the data points to obtain 
the parameters or coefficients. The two most common methods are the maximum 
likelihood estimation and the least squares approach. In the maximum likelihood 
approach, a likelihood function is defined, and the objective is to select the value of 
the parameters ofthe model so that the actual observed data are more probable than 
any other choice. For large data sets this approach frequently gives good results. 
We will not discuss this approach and the reader is referred to [MI087] or any 
statistics text. 

In the least squares approach, the goal is to select the parameters for the model so 
that the square of the difference between the observed value and the one predicted 
by the model is minimized. We saw the use of this approach for linear regression 
analysis in Chapter 2. This approach works weIl when the size of the data set is 
not very large. 

For applying the least squares approach, we will consider the equation for the failure 
intensity as a function ofthe mean numberoffailures (Le., )..(/1) = )..0(1- (I,jvo». To 
determine parameters for this equation, we need a set of observed data points, each 
containing the value of the dependent variable and the value of the independent 
variable. In this case, this means that we need data points, each of which gives the 
failure intensity and the number of failures. 

The data collected, as specified earlier, may be in the form of failure times or 
grouped failure data. The first thing that needs to be done is to convert the data 
to the desired form by determining the failure intensity for each failure. If the 
data ab out failure times is available, this conversion is done as follows [MI087]. 
Let the observation interval be (0, tel (te is the time when the observations are 
stopped; it will generally be greater than the time of the last failure). We partition 
this observation interval at every kth failure occurrence. That is, this time interval 
is partitioned into sub-intervals, each (except the last one) containing k distinct 
failures. If the total number of failures observed until te is me , then the number of 
subintervals is fJ" where p = I me/ k 1- The observed failure intensity for an interval 
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can now be computed by dividing the number of failures in that interval by the 
duration of the interval. That is, for an intervall, the observed failure intensity Ti 

is given by 

k 
rl = , I = I, ... , p - 1. 

tkl - tk(I-I) 

For the last interval, the failure intensity is 

m e - k(p - I) 
rp = 

te - (k(l-I) 

These failure intensities are independent of each other as the different time intervals 
are disjoint. The estimate for the mean value for the Ith interval, ml, can be obtained 
by 

ml = k(l- 1). 

(This takes the start value for the interval but has been found to be better than taking 
the average or midpoint value [MI087].) In this method, if k is chosen to be too 
smalI, large variations will occur in failure intensity. If the value of k is very large, 
too much smoothing may occur. A value of about five (i.e., k = 5) gives reasonable 
results [MI087]. 

Obtaining data in this form from grouped data is even easier. For each time interval 
for which failures were counted, dividing the number of failures by the duration 
of the interval will give the failure intensity of that interval. The total number of 
failures for an interval is the sum of all the failures of all the intervals before this 
interval. 

In this manner, we can get from the collected data a set of p data points, each 
giving a failure intensity and the total number of failures observed. As the relation
ship between them is linear, a regression line can be fit in these data points. The 
determination of the coefficients for the regression line was discussed in Chapter 
2. We leave the details as an exercise. 

However, the approach of simple linear regression minimizes the sum of absolute 
eITors (between the predicted value by the model and the actual value observed). 
This approach gives a higher weight to the data points with larger failure intensity. 
In other words, the coefficients will be inftuenced more by data points with larger 
failure intensity. A better approach is to consider relative error, which is absolute 
eITor divided by the value given by the model. The least square approach here will 
be to minimize the sum of all the relative eITors. With relative eITors, each data 
point is given the same weight. However, with this, linear regression cannot be 
used, and c1osed-form equations for determining the coefficients are not available. 
For this approach, numerical methods must be used to determine the coefficients. 
The approach will be to obtain the derivatives of the equation for least squares 
(with relative eITor) with the two coefficients to be determined, set these to 0, 
and then solv~ these two simultaneous equations through some standard numerical 
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technique like the Newton-Raphson method. For further discussion on this, the 
reader is referred to [MI087] or any numerical analysis text. 

Once the parameters are known, we can also predict the number of faults in the 
delivered software using the reliability model (which can be used to accurately 
predict faults per KLOC). As we don 't otherwise know how many faults remain in 
software, generally, this data is available for a project only after the software has 
been in operation for a few years and most of its faults have been identified. By 
using the reliability model, we can predict this with some confidence. 

The total failures experienced in infinity time by a software is related to the total 
faults in the system, as we are assuming that faults are generally removed after 
a failure is detected. However, the fault removal process may not be perfect and 
may introduce errors. In addition, each failure may not actually result in removing 
of a fault, as the information obtained on failure may not be sufficient for fault 
detection. If the total number of faults in the software is Wo, we can get va from 
this by using the fault reductian factar, B: 

Wo 
vO=]j 

The fault reduction factor, B, is the ratio of the net fault reduction to the total 
number of failures experienced. If each failure resulted in exactly one fault being 
removed, then B would be 1. However, sometimes a failure is not sufficient to 
locate a fault or a fault removal adds some faults. Due to these, the fault reduction 
factor is not always 1. Currently available data suggests that B is dose to 1, with 
an average value of about 0.95 [MI087]. This value can be used to predict the 
number of faults that remain in the software. Altematively, the value of B can be 
computed from the data collected (additional data about fault correction will have 
to be compiled). 

9.6.4 Translating to Calendar Time 

The model discussed here is an execution-time model: all the times are the CPU 
execution time of the software. However, software development and project plan
ning works in calendar time-hours, days, months, etc. Hence, we would like to 
convert the estimates to calendar time, particularly when we are trying to predict 
the amount of time still needed to achieve the desired reliability. In this case, it is 
dearly desirable to specify the time in calendar time, so that the project plan can 
be modified appropriately, if needed. 

As reliability modeling is performed from system testing onward, the execution 
time can be related to the effort for testing, debugging, etc. The simplest way to 
do this is to determine an average ratio of the amount of effort to execution time 
and then to use this effort to estimate the calendar time. Altematively, instead of 
giving one ratio, two ratios can be specified--one for the CPU time expended and 
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one for the failures detected. These ratios can then be used to determine the total 
amount of effort. 

Let us explain this approach with a simple example. Generally, the main resource 
during testing is the test team effort. For now, we consider this as the only resource 
of interest for modeling calendar time. Suppose the test team runs the software for 
10 epu hours, during which it detects 25 failures. Suppose that for each hour of 
epu execution time, an average of 8 person-hours of the test team are consumed 
(ratio of effort to epu time), and that on an average 4 person-hours is needed on 
each failure to analyze it (ratio of effort to failures). Hence, the total effort required 
for this is 

10 * 8 + 25 * 4 = 180 person-hours. 

If the quantity of test team resources (i.e., the number of members in the test team) 
is three persons, this means that the calendar time for this is 60 hours. As the 
number of failures experienced is a function of time according to the Basic model, 
one overall ratio could also have been given with epu time (or with number of 
failures). In this example, the overall ratio will be 18 person-hours per epu hour. 

This simple approach considers only the test team resource when converting exe
cution time to calendar time. A more elaborate method was proposed in [Mus75, 
MI087], which partitions the overall testing process (during which data is be
ing eolleeted) into different phases and then uses different ratios for the different 
phases. According to this approach, at any given time there is some resouree that is 
the "limiting resouree," and this resouree determines the rate at which the exeeution 
time is expended. Typically, in the beginning, when the failures are most frequent, 
the limiting resouree is the fault-fixing personnel. Testing has to be stopped after 
every failure to allow the fault-fixing team to fix the fault. Later as the failure 
frequeney decreases, the testing personnel beeomes the limiting resouree and the 
fault-fixing personnel are not fully oeeupied. Stilliater, when failures are very rare, 
it is the computer resources that beeome the limiting resources that govern how 
fast the execution time is expended. 

With this model, we can obtain the ratios (either two ratios--one for the exeeution 
time and one for the number of failures--or just one ratio) of these resourees to 
the exeeution time. These ratios will be obtained from past experienee with the 
software development and testing proeess. By extraeting the exeeution time in 
these phases from the colleeted data, these ratios ean be used to determine the 
amount of resourees needed for eaeh of these phases. From the resource usage 
and the quantity of resourees used in the phase (number of test personneI, number 
of fault-fixing personneI, number of computers available for testing), the calendar 
time for eaeh phase can be determined. The ealendar times for the different phases 
ean then be added up to get the overall calendar time. 
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Time ofFailure (in CPU sec) 

311 3089 5922 10,559 14,358 

366 3565 6738 10,559 15,168 

608 3623 8089 10,791 

676 4080 8237 11,121 

1098 4380 8258 11,486 

1278 4477 8491 12,708 

1288 4740 8625 13,251 

2434 5192 8982 13,261 

3034 5447 9175 13,277 

3049 5644 9411 13,806 

3085 5837 9442 14,185 

3089 5843 9811 14,229 

TABLE 9.1. FaiIure data for a real system 
[MI087]. 

9.6.5 An Example 

Let us illustrate the use of the reliability model discussed earlier through the use 
of an example. In [MI087], times for more than 130 failures for a real system 
called Tl are given. For illustration purposes, we select about 50 data points from 
it, starting from after about 2000 CPU sec have elapsed (from the 21 st failure). We 
define r = 0 after the first 2000 sec of [MI087] to illustrate that the choice of r = 0 
is up to the reliability estimator and to eliminate the first few data points, which 
are likely to show a wider variation, as they probably represent the start of testing. 
The times offailures with this r = 0 are given in Table 9.1. 

As we can see, this is the failure times data. From this, using k = 5, we obtain the 
failure intensities and the cumulative failures as discussed earlier. The data points 
we get are: 

(0.0045,0), (0.0026, 5), (0.0182, 10), (0.0047, 15), (0.0040, 20), 
(0.0020, 25), (0.0056, 30), (0.0032, 35), (0.0023, 40), (0.0035, 45) 

For the purposes of this example, we will try to fit a regression line to this data 
using the regular least squares approach discussed in Chapter 2. We are doing this 
largely because this form of minimization and parameter determination can be done 
without a computer pro gram. However, as discussed earlier, this method is likely 
to give poorer results compared to minimizing the square of relative errors (for 
which equation solving programs will be required). Using the regular regression 
line fitting approach, we get AO = 0.0074 failure/CPU sec and Vo ~ 70 failures. (If 
the complete data from [MI087] is used, then Vo comes out to about 136 failures. 
Because we are not counting the first 20, this means that by fitting a line on the 
complete data using the relative error approach, Vo would come out to be around 
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110. This error in our estimate is coming due to the smaller sampIe and the use 
of absolute error for determining the coefficients.) By the reliability model, the 
current reliability of the software (after 50 failures have been observed) is about 
0.002 failure per CPU second. 

Assuming that the fauIt reduction factor is 1, we can see that the total number of 
estimated faults in the system at the start of the time is 70. Out of this, 50 faults 
have been removed (after observing the 50 failures). Hence, there are still 20 faults 
left in the software. Suppose the size of the final software was 20,000 LOC. If the 
failure data given earlier is until the end of system testing (i.e., the software is to 
be delivered after this) and this software development project is a typical project 
for the process that was followed, we can say that the capability of this process is 
to deliver software with a fault density of 1.0 per KLOC. 

Now let's suppose the current failure intensity after 50 failures is not acceptable 
to the client. The desired failure intensity is 0.001 failure per CPU second. Using 
the model, we can say that to achieve this reliability, further testing needs to be 
done and the amount of CPU time that will be consumed in this extra testing can 
be estimated to be 

70/0.0074 * In(0.002/0.001) = 6,527 CPU-sec. 

That is, approximately 1.81 CPU hours of testing needs to be performed to achieve 
the target reliability. Suppose the limiting resource is only the testing personneI, 
there is one person assigned to test this software, and on an average 20 person-hours 
of testing personnel effort is spent for each hour of CPU time. In this case, we can 
say that more than 36 person-hours of testing need to be done. In other words, the 
calendar time needed to achieve the target reliability is ab out a week. 

9.7 Summary 

Testing plays a critical role in quality assurance for software. Due to the limitations 
of the verification methods for the previous phases, design and requirement faults 
also appear in the code. Testing is used to detect these errors, in addition to the 
errors introduced during the co ding phase. 

Testing is a dynamic method for verification and validation, where the system 
to be tested is executed and the behavior of the system is observed. Due to this, 
testing observes the failures of the system, from which the presence of faults can 
be deduced. However, separate activities have to be performed to identify the faults 
(und then remove them). 

There are two approaches to testing: functional and structural. In functional testing, 
the intemallogic of the system under testing is not considered and the test cases are 
decided from, the specifications or the requirements. It is often called "black box 
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Exercises 

testing." Equivalence dass partitioning, boundary value analysis, and cause-effect 
graphing are examples of methods for selecting test cases for functional testing. 
In structural testing, the test cases are decided entirely on the intemallogic of the 
program or module being tested. The extemal specifications are not considered. 
Often a structural criterion is specified, but the procedure for selecting test cases 
is left to the tester. The most common control ftow-based criteria are statement 
coverage and branch coverage, and the common data ftow-based criteria are all
defs and all-uses. Mutation testing is another approach for structural testing that 
creates mutants of the original pro gram by changing the original program. The 
testing criterion is to kill all the mutants by having the mutant generate a different 
output from the original program. 

As the goal of testing is to detect any eITors in the programs, different levels of 
testing are often used. Unit testing is used to test a module or a small collection of 
modules and the focus is on detecting coding eITors in modules. During integration 
testing, modules are combined into subsystems, which are then tested. The goal 
here is to test the system design. In system testing and acceptance testing, the entire 
system is tested. The goal here is to test the system against the requirements, and 
to test the requirements themselves. Structural testing can be used for unit testing, 
while at higher levels mostly functional testing is used. 

The testing process usually comrnences with a test plan, which is the basic docu
ment guiding the entire testing of the software. It specifies the levels of testing and 
the units that need to be tested. For each of the different units, first the test cases 
are specified and then they are reviewed. During the test case execution phase, the 
test cases are executed, and various reports are produced for evaluating testing. 
The main outputs of the execution phase are the test log, the test summary report, 
and the eITor report. 

The main metric of interest during testing is the reliability of the software under 
testing. Reliability of software depends on the faults in the software. To assess the 
reliability of software, reliability models are needed. To use a model for a given 
software system, data is needed about the software that can be used in the model 
to estimate the reliability of the software. Most reliability models are based on the 
data obtained during the system and acceptance testing. Data about time between 
failures observed during ~esting are used by these models to estimate the reliability 
of the software. We discussed one such reliability model in the chapter in some 
detail and have discussed how the reliability model can be used in a project and 
what the !imitations of reliability models are. 

1. Define eITor, fault, and failure. What is the difference between a fault and a 
failure? Does testing observe faults or failures? 
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2. What are the different levels of testing and the goals of the different levels? 
For each level, specify which of the testing approaches (functional, structural, 
or some other) is most suitable. 

3. What is the goal of testing? Why is the psychology of the tester important? 

4. Testing often consumes more resources than any other phase in software 
development. List the major factors that make testing so expensive. 

5. Convince yourself that the branch coverage criterion does not satisfy the ap
plicability, antidecomposition, and anticomposition axioms, but does satisfy 
the antiextensionality axiom. 

6. Determine which of the axioms are satisfied by the all-defs and all-uses 
criteria. 

7. Consider a simple text formatter problem. Given a text consisting of words 
separated by blanks (BL) or newline (NL) characters, the text formatter has 
to covert it into lines, so that no line has more than MAXPOS characters, 
breaks between lines occurs at BL or NL, and the maximum possible number 
of words are in each line. The following pro gram has been written for this 
text formatter [GG7S]: 

alarm := false; 
bufpos:= 0; 
fill := 0; 
repeat 

inchar(c); 
if (c = BL) or (c = NL) or (c = EOF) 
tben 

if bufpos != 0 
tben begin 

if (fill + bufpos < MAXPOS) and (fill != 0) 
tben begin 

outchar(BL); 
fill := fill + 1; end 

else begin 
outchar(NL); 
fill := 0; end; 

for k:=l to bufpos do 
outchar(buffer[k]) ; 

fill := fill + bufpos; 
bufpos:= 0; end 

else 
if bufpos = MAXPOS 
tben alarm := true 
else begin 

bufpos := bufpos + 1; 
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buffer[bufpos] := c; end 
until alarm or (c = EOp); 

For this program, do the following: 

(a) Select a set of test cases using the functional testing approach. Use as 
many techniques as possible and select test cases for special cases using 
the "error guessing" method. 

(b) Select a set oftest cases that will provide 100% branch coverage. 

(c) Select a set of test cases that will satisfy the all-defs and the all-uses 
criteria (except the ones that are not feasible). 

(d) Create a few mutants by simple transformations. Then select a set of test 
cases that will kill these mutants. 

(e) Suppose that this program is written as a procedure. Write a driver for 
testing this procedure with the test cases selected in (a) and (b). Clearly 
specify the format of the test cases and how they are used by the driver. 

8. Suppose three numbers A, B, and C are given in ascending order representing 
the lengths of the sides of a triangle. The problem is to determine the type 
of the triangle (whether it is isosceles, equilateral, right, obtuse, or acute). 
Consider the following program written for this problem: 

read(a, b, c); 
if(a < b) or (b < c) then 

print("Illegal inputs"); 
return; 

if (a=b) or (b=c) then 
if(a=b) and (b=c) then print("equilateral triangle") 
else print("isosceles triangle") 

else begin 
a := a*a; b := b*b; c := c*c; 
d:= b+c; 
if (a = d) then print("right triangle") 
else if (a<d) then print("acute triangle") 
else print("obtuse triangle"); 

end; 

For this program, perform the same exercises as in the previous problem. 

9. Do the reliability models actually measure reliability or estimate it from some 
other measurements? 

10. Define some data flow criteria for testing an entire dass (i.e., not just for 
testing the methods independently) (refer to [HR94]). 

11. Convert Musa's reliability model for calendar time. Assurne that the testing 
personnel resource is the only limiting factor, and that N persons are assigned 
for testing. 
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12. Another method for evaluating software reliability is to use the Mill 's see ding 
approach. In this method some faults are seeded in the program, and reliability 
is assessed based on how many of these seeded faults are detected during 
testing. Develop a simple reliability model based on this approach. Define 
your parameters, and give a formula for estimating the reliability and the 
number of faults remaining in the system. 
What are the drawbacks and limitations of this seeding model? What are the 
assumptions about the seeded faults? 

13. You want to find whether there is a correlation between complexity and relia
bility and between size and reliability. What data will you collect during and 
after termination of a project? Design an experiment to perform this study. 
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CASE STUDY 

Test Plan 

As was discussed in the chapter, testing is a fairly involved activity that is quite 
expensive. A number of documents are produced as a result of testing. Here we 
give the test plan and the test case specifications for system testing. The outcome 
of the testing and various reports is not included. 

This document describes the plan for testing the course scheduling software. All 
major testing activities are specified here; additional testing may be scheduled later, 
if necessary. 

1. Test Units 

In this project we will perform two levels oftesting: unit testing and system testing. 
Because the system is small, it is feIt that there is no need for elaborate integration 
testing. The basic units to be tested are: 

Modules to input file-l 
Modules to input file-2 
Modules for scheduling 

In addition, some other units may be chosen for testing. The testing for these 
different units will be done independently. 

2. Features to Be Tested 

All the functional features specified in the requirements document will be tested. 
No testing will be done for the performance, as the response time requirement is 
quite weak. 

3. Approach for Testing 

For unit testing, structural testing based on the branch coverage criterion will 
be used. Thegoal is to achieve branch coverage of more than 95%. The CCOV 
coverage analyzer tool will be used to determine the coverage. System testing will 
be largely functional in nature. The focus is on invalid and valid cases, boundary 
values, and special cases. 
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4. Test Deliverables 

The following documents are required (besides this test plan): 

• Unit test report for each unit. 

• Test case specification for system testing. 

• Test report for system testing. 

• Error report. 

The test case specification for system testing has to be submitted for review before 
system testing commences. 

5. Schedule and Personnel Allocation 

The entire testing-unit and system-will be finished within the month of April. 
Much of the unit testing will be done in the first two weeks of April. Test case 
specifications for the system testing will be produced while unit testing is going 
on. This schedule is consistent with the overall schedule of the project. The schedule 
for testing is shown here: 

Unit testing 
Unit testing 
Test case specs 
System testing 

1****** 
1****** 

***** 

Person-l 
Person-2 
Person-3 

********** 2 Persons 

April 

Test Gase Specifications for System Testing 

Here we specify all test cases that are used for system testing. First, the different 
conditions that need to be tested, along with the test cases used for testing those 
conditions and the expected outputs are given. Then the data files used for testing 
are given. The testeases are specified with respect to these data files. The test 
cases have been selected using the functional approach. The goal is to test the 
different functional requirements, as specified in the requirements document. Test 
cases have been selected for both valid and invalid inputs. 

SEQ TEST_CASE CONDITION BEING EXPECTED OUTPUT 
NO. [File] CHECKED 

EmptyJlle EmptyFI Print message and stop 
2 Empty_file EmptyF2 Print message and stop 
3 No file FI Does not exist Print message and stop 
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SEQ TEST_CASE CONDITION BEING EXPECTED OUTPUT 
NO. [File] CHECKED 

4 No file F2 Does not exist Print message and stop 

For checking FILEI format error 

5 [F1.l] Incorrect course no. Print course no. and 
format error message 

6 [F1.7] More than allowed (30) Error message and skip 
courses to lecture times 

7 [F1.4] Course list empty Error message and skip 
to lecture times 

8 [FI.5] Spelling of header Error message and stop 
9 [F1.l] Lecture time format Print time, error message, 

and continue 
10 [F1.2] More than allowed no. Error message, discard 

of Iecture times (15) extra and skip to room no.s 
11 [F1.4] Lecture times list empty Print "No lecture times" 

and parse rooms 
12 [Fl.1] Incorrect room no format Print room no. and message 
13 [Fl.1] No colon (:) between Continue 

room# and capacity 
14 [Fl.1] Capacity format Print message with room no. and 

capacity and continue 
15 [Fl.1] Capacity more than Error message, continue 

limit (300) 
16 [F1.l] Capacity less than 10 Error message, continue 
17 [F1.7] More than 20 room#, cap Error message, stop 

entries 
18 [FI.4] Room list empty Error message, stop 
19 [Fl.l] No correct room entries Error message, no schedu-

ling, continue parsing 
20 [FI.3] Same course_no entered Print message and discard 

more than once the entry 
21 [F1.3] Duplicate Iecture time Print message, discard 

it, and continue 
22 [F1.3] Duplicate room entry Print message, ignore 

it, and continue 

FILE2 format (for FILEI, F1.8 is used) 

23 [F2.1] Enrollment ::: 2 Print message, ignore 
it, and continue 

24 [F2.1] Enrollment in range Executes normally 
[3-250] 

25 [F2.I] Enrollment exceeds 250 Print message,continue 
26 [F2.2] No preference specified Scheduled 
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SEQ TEST_CASE CONDITION BEINO EXPECTED OUTPUT 
NO. [File] CHECKED 

27 [F2.1] More than allowed number Print message and 
of preferences (5). discard the rest 

28 [F2.1] Duplicate course entry Print message and 
ignore duplicate 

Consistency of FILE2 with FILEl. File Fl.8 used for file l. 

29 [F2.1] Course not present in Print message, ignore 
the list of offered courses it, and continue 

30 [F2.1] Preference not found in Print message and 
lecture time list ignore the preference 

31 [F2.1] Enrollment > max. room Error message 
capacity available 

32 [F2.4] Missing enrollment field Ignore the course 

SCHEDULINO cases. File F1.8 used for file 1. 

33 [F2.4] No valid courses in F2 Print message and stop 
34 [F2.2] No PO course with prefs Schedule 
35 [F2.4] No UO course with prefs Schedule 
36 [F2.4] No PO courses with no pref Schedule 
37 [F2.2] No two courses allotted The first course is given 

at the same time and in the first preference 
the same room 

38 [F2.2] Room capacity is more Course scheduled in a 
than the classroom room with capacity 

more than enrollment 
39 [F2.2] PO courses given priority PO course is scheduled; 

over UO courses even if UO course faces conftict 
UO course appears before 
the PO course in input 

40 [F2.2] Courses scheduled in the The first course is given 
order they appear in the the best pref., second the 
input file next pref., and so on 

41 [F2.2] Highest possible preference The nth pref. honored with 
of a course is honored explanation for all the 

earlier n-1 preferences 
42 [F2.3] No two PO courses The first one scheduled 

scheduled in the same slot and conftict shown for 
even if same pref. given the second course 

43 [F2.3] PO course with pref. given Courses with pref.s are 
priority over PO courses scheduled before 
with no preference 
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44 [F2.2] 

45 [F2.2] 

PG courses with no pref.s 
are guaranteed a room even 
if some UG course has to 
be "unscheduled" 
No room with required 
capacity available for UG 
course with no preference 

PG course scheduled 
and conflict generated 
for the UG course 

Error message 

Data Files for Test Cases 

Note: To present these files compactly, aB the new line characters are not included. 
Some formatting has been done to enhance readability. 

File Fl.l 
rooms 

F-101 30 105 : 40 1052: 25 F30:50 301 :9311: 325 320200 
310: 211 312 2a 313 : 34201 :00678 ; 

cour~·es 

Xe539 x29 53ABc cs5394 csa59 cs250 es 245 eS665 ; 
times 

TT TWlO TTlO:30 MWFlO:30 MWF9 MWF09 MWF789 10253 TTL2 
TTlI TTlO-30; 

File F1.2 
rooms 

1002020039201 45 202 50 203 50 204 60 205 200 206 299 
207 10208300209100301 1130225303 153045630577 
306 30 307 40 308 60 309 90 400 95 404 44 405 67 ; 

courses 
cs444 cs_233 eS555,cs3423 cs665 ; 

times 
TT8 TT9 MWF8 MWF9 MWFlO MWFll MWF12 MWF2 MWF3 MWF4 

TTl:30 
TTlI :30 TTI TT3 TT5 TTl2:30 TT3:30 ; 

File Fl.3 
rooms 

101 :25030349401 40 101 303034520250 ; 
courses 

cs320 cs741 cs201 cs320 cs622 ; 
times 

TT9 MWF12 TTlO:30 MWF12 TTlO:30 ; 

File F1.4 
rooms 

courses 
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File FI.5 
rooms 

202 34 100 10 ; 
course 

cs330 ; 
timeslot 

TTl MWF12; 

File F1.6 
rooms 

202:39 300 56 ; 
courses 

times 
TT3; 

File FI.7 
rooms 

101:25456:7834590346 90 347 90 348 90 349 90 
355 90 365 90 375 90 385 90 395 90 305 90 335 90 
4959054590645907459094590946 9015590; 

courses 
cs301, cs302, cs303, cs304, cs305, cs306 cs307 cs308 
cs309 cs201 cs601 cs602 cs603 cs604 cs605 cs606 cs607 
cs608 cs609 cs611 cs641 cs751 cs752 cs753 cs754 cs755 
cs756 cs757 cs758 cs759 cs123 ; 

times 
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MWFl, MWF2, MWF3, MWF4 MWF5 MWF6 MWF7 MWF8 MWF9 
MWF91 

MWF92 MWF93 MWF94 MWF98 MWF99 MWF56 

File FI.8 
rooms 

201:502027520330204150 ; 
courses 

cs31O, cs320, cs330, cs340 cs350 cs315 cs335 cs365 cs325 cs345, 
cs355 cs305 cs360 cs370 cs380 cs375, cs610 cs620 cs605 cs615, 
cs630, cs625, cs635 cs640 cs650 cs645 cs660, cs655 cs665 cs670 ; 

times 
MWF9, MWFl1, MWF2 TT8:30TTl TTll:30; 

File F2.1 
course 

cs305 25 TT8 TT6 TT9 MWF8 
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cs344 45 TI1 
cd456 56 Tw56 
cs365 200 TI1 MWF9 
cs3aO 301 TI1 
cs345 0 TTl1:30 
cs601 267 TI4 
cs665 140 TTl 
cs305 45 TI1 
cs335 dfTTl 
cs645 45 TI1 TI11:30 TT8:30 MWF2 MWF11 MWF9 
cs330 100 TTl MWF9, 
MWF2MWF11 

File F2.2 
course enrollment preferences 
cs355 35 TTl 
cs660 70 
cs310 79 MWF11 
cs640 100 
cs315 50 TTl1:30 
cs320 100 MWF9 
cs305 50 TI1 
cs325 70 TTl 
cs345 35 
cs365 70 

File F2.3 
course enrollment preferences 
cs605 70 TI1 
cs310 50 TTl1:30, TTl 
cs625 35 TTl1:30 
cs615 70 
cs325 35 MWF9 
cs330 55 MWF9 
cs610 100 TI1, TTlI:30, MWF9 
cs335 50 MWF9, TTl1:30, TTl 
cs650 150 MWF2MWF9 
cs635 50 
cs660 150 
cs655 30 TI1, MWF2 MWF9 
cs315 52 
cs320 75 
cs305 70 MWF11 
cs340 150 TI8:30 
cs345 70 TT8:30 MWF11 
cs350 50 TT8:30 MWF11 
cs355 50 TT8:30 MWF11, MWF2 
cs360 50 MWF9MWF11 
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cs365 30 
cs370 50 
cs375 50 
cs620 155 

File F2.4 
course 
cs635 
cs620 
cs330 

enrollment preferences 
45 MWFll,TIll:30 
36 TII 

cs320 26 

Case Study 479 
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project plan, 204 
requirements specification document, 

153 
specification of functional design, 262 
specification of OOD, 321 
structured design, 253 
test case specifications, 473 
test plan, 472 

Cause-effect graphing, 415 
ccov tool, 472 
Central transforms, 231 
Change control 

change request, 56 
fault report, 57 
See Software configuration management 

Change request, 56 
Change request frequency, 145 
Chief programmer team, 178 
Class, 99, 277, 279 

container, 302 
friends of, 291 
hierarchy, 285 
inheritance, see Inheritance 
methods, 280 
operation types, 280 
relationship to abstract data types, 280 
relationship to objects, 279 
state modeling? 343 

Client-server interaction of objects, 282 
COCOMO, 166, 197,201 

cost driver attributes, 166 
distribution with phases, 168 

effort multipliers, 167 
example, 169, 173, 176 
milestone determination, 174 
project types, 166 
schedule estimation, 171 
steps,166 

Code analysis of the Case Study, 398 
Code inspection checklist, 385 
Code inspections, 384 
Code reading, 369 
Code style metrics, 391 
Code verification, 369 

code reading, 369 
formal verification, see Formal 

verifications of programs 
static analysis, 370 
symbolic execution, see Symbolic 

execution 
unit testing, 386 

Coding, 16,355 
goal of, 355 
of function-oriented design of Case 

Study,398 
of 00 design of the Case Study, 400 

Cohesion, 219, 292 
Cohesion metric, 351 
Commenting, 366 
Comparison of different V &V techniques, 

443 
Competent programmer hypothesis, 428 
complexi ty tool, 398 
Complexity metrics, 388 
Configuration control board, 55 
Configuration management, see Software 

configuration management 
Consistency checkers, 347 
Constructor of an object, 280 
Container dasses, 302 
Context diagram, 93 
Control ftow-based testing criteria, 419 
Corrective maintenance, 6 
Correctness of design, 211 
Correlation coefficient, 61 
Cost estimation, see Estimation 
Cost of correcting errors, 32 
Cost of fixing requirement errors, 77 
Cost schedule milestone graph, 190 
Coupling,217,292 
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Coupling between classes, 313 
Coupling effect, 428 
Coverage analysis, 432 
Critical design review, 345 
Cross-referencing of requirements, 136 
Cycle time, 10 
Cyclomatic complexity, 348, 389 
Cyclomatic complexity based testing, 421 

Data abstraction, 215, 362 
Data bindings, 350 
Data dictionary, 88, 91 
Data flow analysis, 370 
Data-flow based testing, 422 

all defs criterion, 423 
all uses criterion, 424 
def/use graph, 422 

Data flow diagrams, 88, 228, 301 
leveled,90 
mIes for construction, 90 

Decision tables, 128 
Def/use graph, 422 
Defect distribution, 32 
Defect prevention, 32 
Defect removal efficiency, 451, 453 
Delphi approach, 199 
Depth of inheritance tree, 312 
Design, 15 

detailed, see Detailed design 
top-level, see System design 

Design analysis of the Case Study, 258 
Design constraints on requirements, 125 
Design document, 15 
Design heuristics, 235 
Design methodology, 210 
Design metrics, 242 

graph impurity, 244 
identifying error-prone modules, 248 
information flow metrics, 247 
network metrics, 243 
stability, 244 

Design principles, 211 
Design review, 345 

checklist, 346 
Design specification, 221, 226 

of function-oriented design of the Case 
Study,262 

of 00 design of Ca se Study, 321 

Design verification, 240 
cross checking, 241 
review checklist, 241 
reviews, 240 
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Design walkthrough, 345 
Desk review, 370 
Destructor of an object, 280 
Detailed design, 16,329 

PDL,337 
verification, 345 

Development process, 13,26,34 
A step, 34 
entry criteria for a step, 35 
exit criteria for a step, 35 
iterative enhancement, 43 
prototyping, 40 
sprial model, 44 
waterfall model, see Waterfall model 

dmetric tool, 260 
Drivers for testing, 357, 407 
Dynamic binding, 290 
Dynamic modeling, 298 

Eamed value method, 191 
Efficiency of design, 211 
Encapsulation, 277 
Equivalence class partitioning, 413 
ER diagrams, 100, 113 
Error guessing, 418 
Error report, 451 
Error tracing, 452 
Error, see also defect-related topics 
Errors, cost of correcting, 32 
Estimation,59, 160,201 

building models, 163 
COCOMO, see COCOMO 
delphi approach, 161 
for the Case Study, 204 
multivariable models, 166 
single-variable models, 164 
uncertainties, 161 

Event classes, 298 
Evolutionary prototyping, 116 
Exhaustive testing, 409 
External interface requirements, 126 

Factoring, 228, 233 
Failure, 405, 456 
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Failure density function, 455 
Failure probability, 454 
Fan-in of modules, 236 
Fan-out of modules, 236 
Fault report, 57 
Fault tolerance, 125 
Fault, see deJect-related topics 
Finite-state automata, 129,344 
Flow graph, 348, 372, 419 
Formal verification of programs, 

see Axiomatic approach for 
verification 

Friends of a cIass, 291 
Function point analysis, 138 

drawbacks, 141 
parameter complexity, 139 
parameters, 139 
relationship to LOC, 141 
unadjusted function points, 140 
weights, 140 

Function-oriented design, 209 
Function-oriented design of the Case 

Study, 253 
Functional abstraction, 214 
Functional modeling, 301 
Functional module specifications, 331 
Functional requirements, 124 
Functional testing, 412 

boundary value analysis, 414 
cause--effect graphing, 415 
equivalence cIass partitioning, 413 
error guessing, 418 

Gantt chart, 172 
Generic types, 303 
Glass box testing, see Structural testing 
Graph impurity metric, 244 

Halstead's measures, 387, 389 
Hardware-software cost, 3 
Hazard rate, 455 
Home page for the book, 19 

Incremental testing, 403, 407 
Incremental testingfor subclasses, 440 
Inflow of a module, 247 
Information flow metrics, 247 
Information hiding, 291, 361, 364 

Inheritance, 100,284 
base dass, 284 
cIass hierarchy, 285 
multiple, 288 
nonstrict, 288 
repeated, 289 
strict, 288 
subcIass, 284 
supercIass, 284 

Inspections, 183, 384 
benefits, 187 
costs, 187 
process, 184 
team, 184 

Integration testing, 446 
Interna! documentation of pro grams, 366 
Iterative enhancement model, 43 

Knot count, 390 

Lack of cohesion in methods, 314 
Law of Demeter, 366 
Layers of abstraction, 216 
Least squares approach, 462 
Leveled data flow diagram, 90 
Levels of testing, 445 
Linear correlation, 62 
Live variables, 371, 390 
Logarithmic reliability model, 458 
Logic design of modules, 340 
Loop invariant, 381 

Maintainability, 30 
Maintenance, 5 

adaptive, 6 
corrective, 6 
costs,6 

Maximum likelihood approach, 462 
Mean time to failure, 455 
Methods of a cIass, 280 
Metrics, 18,49 

bang metric, 142 
cohesion metric, 351 
complexity measures, 388 
cycIomatic comp1exity, 348 
data bindings, 350 
defect removal efficiency, 451 
for design, 242 
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function points, 138 
graph impurity, 244 
Halstead's, 387 
information fIow metrics, 247 
knot count, 390 
live variables, 390 
network metrics, 243 
for object-oriented design, 311 
productivity, 453 
reliability, 453 
size measures, 386 
span, 390 
stability, 244 
style metric, 391 
text size, 138 
topological complexity, 391 

Metrics analysis of Case Study code, 398 
Metrics analysis of the Case Study design, 

258 
Metrics for OOD, 311 

coupling between classes, 313 
depth of inheritance tree, 312 
lack of cohesion in methods, 314 
number of children, 312 
response for a class, 313 
weighted methods per class, 311 

Model building, 59 
correlation coefficient, 61 
data-driven models, 60 
regression analysis, 62 
scatter plot, 61 
theoretical models, 60 

Modularity, 215 
Module size, 365 
Module specifications, see Specifications 
Monitoring and control, 189,202 
Most abstract inputs, 230 
Most abstract outputs, 230 
Multiple inheritance, 288 
MuItivariate regression, 62 
Musa's basic model, see Basic model for 

reliability 
Mutation testing, 428 

competent programmer hypothesis, 428 
coupling effect, 428 
mutants, 429 
mutation operators, 429 
performance, 431 
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Naming of variables and modules, 363 
Nesting of constructs, 364 
Network metrics, 243 
Newton-Raphson method, 464 
Number of children, 312 

Object,277 
behavior, 279 
constructor, 280 
destructor, 280 
identity, 279 
interface, 277 
reIationships between, 282 
reuse, 292 
state,278 

Object diagram, 100, 294, 299 
drug store example, 10 1 

Object modeling technique (OMT), 276, 
297 

dynamic modeling, 298 
functional modeIing, 301 
optimization, 302 
rate of returns example, 307 
scenarios, 298 
word counting example, 304 

Object-oriented analysis, 98, 297 
aggregation, 100 
assembly, 100 
associations, 10 1 
attributes, 104 
dass, 99 
generalizationlspecialization, 100 
inheritance, 100 
methodology,102 
object diagrams, 100 
relationship to design, 274 
relationship to ER diagrams, 100 
restaurant example, 105 
services, 99 
transition to design, 275 

Object-oriented design, 273 
of the Case Study, 318 
methodology, see Object modeling 

technique (OMT) 
metrics, see Metrics for OOD 
notation, 294 
relations hip to analysis, 274 
specification, 294 
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Object-oriented programming, 366 
law of Demeter, 366 

OOP testing, 434 
incremental testing for subclasses, 440 
state-based testing, 436 

Operational profile, 457 
Operational specifications, 330 
Outftow of a module, 247 

Partial correctness, 383 
Path condition, 375 
Path testing, 421 
Performance requirements, 124 
Personnel plan, 176 
Personnel plan for the Case Study, 205 
PERT chart, 173 
Polymorphism, 284, 289 
Post condition, 331, 378 
Pre-condition, 331, 378 
Predictability of a process, 28 
Problem analysis, see Analysis 
Problem of scale, 8 
Problem partitioning, 85, 212 
Process characteristics, 28 
Process design language (PDL), 337 
Process improvement, 33 

capability maturity model (CMM), 64 
quality improvement paradigm, 67 

Process management, 27, 59 
Process predictability, 28 
Process under statistical control, 29 
Productivity, 4, 453 
Program layout, 365 
Programmer time distribution, 31 
Programming practice, 356 
Programming style, 363 
Project management, 9,17,26,69 
Project management process, 46 
Project monitoring and control, 47,189 
Project monitoring plans for the Case 

Study,207 
Project plan, 25, 160 
Project plan for the Case Study, 204 
Project planning, 47, 159 

personnel plan, 176 
schedule, see Project scheduling 
staffing, 173 
team structure, see Team structure 

Project scheduling, 170 
Project scheduling, 201 

Brooks law, 171 
estimation, 171 
Gantt chart, 172 
milestones, 172 
PERT chart, 173 
Rayleigh curve, 174 

Project tracking, 47 
Projection, 85 
Prototyping,4O, 115, 137 

cost,119 
criteria for deciding, 117 
design prototype, 116 
evolutionary, 116 
horizontal, 118 
restaurant example, 119 
throwaway,116 
vertical, 118 

PSLIPSA, 110 
Psychology of testing, 412 

Quality assurance, see V &V; Testing; 
Inspections 

Quality factors, 11 
Quality improvement paradigm, 67 

Rayleigh curve, 174 
Regression analysis, 62 
Regression testing, 6, 447 
Regular expressions, 127 
Reliability, 12, 453 

calendar and clock times, 456 
definitions, 454 
logarithmic model, 458 
mean time to failure, 455 
Musa's basic model, see Basic model 

for reliability 
Repeated inheritance, 289 
Requirement analysis, see Analysis 
Requirement errors, 76 
Requirement metrics, 137 

Bang metric, 142 
change request frequency, 145 
function points, see Function point 

analysis 
quality attributes, 145 
text size, 138 
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Requirement reading, 137 
Requirement reviews, 134 
Requirement specification, 74, 120, 147 

of Case Study, 153 
design constraints, 125 
desired characteristics, 121 
document structure, 130 
external interface requirements, 126 
functional requirements, 124 
IEEE standards, 130 
languages, see Specification languages 
performance requirements, 124 

Requirements validation, 133 
cross-referencing, 136 
error types, 133 
prototyping, 137 
reading, 137 
review checklist, 135 
reviews, 134 
scenario construction, 137 

Requirements, see Software requirements 
Response for a c1ass metric, 313 
Restaurant example, 95,105, 119 
Reuse, 292 
Reviews, 183, 190 
Rework, 7, 52 

costs,7 
Risk 

analysis, 199 
assessment, 196 
control, 200 
exposure, 199 
identification, 196 
management, 193,202 
monitoring, 200 
prioritization, 199 
resolution, 200 
top-lO items, 196 

RSLlREVS, 111 

SADT,107 
Scatter plot, 61 
Scenario construction, 137 
Scenarios formodeling, 298 
Schedule estimation, 171 
Security, 126 
Semantic objects, 275 
Size, 3, 9, 164,387 

Size estirnation, 165 
Size metrics, 386 
Software, 3 

costs,4,10 
metrics, see Metrics 
problem of scale, 8 
productivity, 4 
size, see Size 
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Software configuration management, 26, 
51,70,179,202 

baselines, 53 
cost of fixing errors, 77 
change control, 55 
configuration control board, 55 
configuration identification, 53 
dependency between items, 55 
error types, 133 
errors,76 
library management, 56 
life of an item, 56 
plan for the Case Study, 206 
process, 79 
relationship to development process, 52 
rework, see Rework 
specification, see Requirement 

specification 
status auditing, 58 
system build, 54 
version management, 56 

Software design, see Design 
Software fault, see deJect-related topics 
Software process, 23, 27 

characteristics, 28 
components, 25 
development process, see Development 

process 
nonengineering processes, 23 
process improvement, see Process 

improvement 
process management, 27 
product engineering processes, 26 

Software quality, 11 
Software quality assurance, 201 
Software reliability, see Reliability 
Software requirement analysis, see 

Analysis 
Software requirement process, 79 
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Software requirement specification (SRS), 
see Requirement specification 

Software requirements, 14,73, 120 
definition, 74 
metrics, see Requirement metrics 
specifications, see Requirement 

specification 
validation, see Requirements validation 

Software size, see Size 
Span, 390 
Specification for object-oriented design, 

294 
Specification 1anguages, 126 

decision tables, 128 
finite-state automata, 129 
regular expressions, 127 
structured English, 127 

Specifications, 330 
of abstract data types, 332 
of functional modules, 331 
post-condition, 331 
pre-condition, 331 
properties, 330 

Spiral model, 44 
Stability metrics for design, 244 
Staffing, 173 
Standards compliance, 125 
State-based testing of cIasses, 436 
State modeling of cIasses, 343 
Statement coverage criterion, 420 
Static analysis of code, 370 
Statistical control, 29 
Stepwise refinement, 216, 340 
Structural testing. 419 

branch testing, 420 
control fiow-based, 419 
data fiow-based, 422 
mutation testing, see Mutation testing 
path testing, 421 
statement coverage criterion, 420 
test case generation, 431 
tool support, 431 

Structure chart, 222, 231, 373 
Structured analysis, 87 

context diagram, 93 
data dictionary, 88 
data fiow diagrams, 88 
methodology, 92 

restaurant example, 95 
Structured design methodology, 227 

applying to Case Study, 253 
central transforms, 231 
design heuristics, 235 
factoring, 228, 233 
first-level factoring, 231 
most abstract input, 230 
most abstract output, 230 
steps, 228 
trans action analysis, 237 
transform analysis, 236 

Structured English, 127 
Structured programming, 16,358 
Stubs for testing, 357, 407 
style tool, 400 
Style metrics for code, 391 
SubcIass testing, 440 
Sufficient completeness of specifications, 

334 
SupercIass, 284 
Symbolic execution, 373 

execution tree, 376 
path condition, 375 

System design, 15 
bottom-up,216 
correctness, 211 
efficiency, 211 
function-oriented design, see also 

Structured design methodology 
modularity, 215 
object-oriented design, see 

Object-oriented design 
principles, 211 
simplicity, 211 
specification, 226 
top down, 216 
verification, see Design verification 

System testing, 446 

Team structure, 178 
chief programmer team, 178 
democratic teams, 178 

Test case 
generation, 431 
review, 450 
specification, 449 
specifications for the Case Study, 473 
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Test criterion, 409 
axioms, 409 
indusion or Subsumption, 411 
reliability, 409 
validity, 409 

Test log, 451 
Test orade, 405 
Test plan, 447 
Test plan for the Case Study, 472 
Test summary report, 451 
Testing, 17, 403 

of abstract data types, 434 
acceptance testing, 17, 446 
bottom-up, 407 
deliverables, 449 
exhaustive,409 
functional, see Functional testing 
incremental, 403 
integration testing, 17, 446 
mutation testing, 428 
of object-oriented programs, see OOP 

testing 
psychology of, 412 
regression, 6, 447 
structural testing, see Structural testing 
system testing, 446 
test case specification, 449 
test plan, 447 
top-down, 407 

Testing levels, 445 
Testing process, 442 
Throwaway prototyping, 116 
Time sheets, 189 
Tool support for testing, 431 
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Tools available from horne page, 20 
ccov,472 
complexity,398 
dmetric,260 
style, 400 

Top-down design, 216 
Top-down testing, 407 
Top-level design, see System design 
Top-down approach to coding, 357 
Topological complexity, 391 
Total correctness, 383 
Transaction analysis, 237 
Transform analysis, 236 

Unit development folder, 192 
Unit testing, 386, 446 
Use cases, 299 
User-defined types, 364 

Verification and Validation (V & V), 181 
Verification of code, see Code verification 
Verification of detailed design, 345 
Version management, 56 

Walkthrough,183 
Waterfall model, 36 

limitations, 39 
outputs, 39 
rationale, 37 

Weighted methods per dass, 311 
Weinberg experiment, 356 
Work products, 35 
WWW address, 19 
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